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Abstract (Deutsch) | Schlagworte: Kunstschnee, Wintersport, Tourismus

Wärmere Winter, weniger Naturschnee, verstärkt auftretende Extremwetterereig-

nisse und die schleichende Verlagerung der für die Produktion von Kunstschnee

optimalen Witterungsbedingungen in die Zeitspanne um Ostern stellen das lang-

fristige wirtschaftliche Überleben vieler Skigebiete in Frage. Während einige der

von diesen Entwicklungen betroffenen Kommunen und privaten Betreiber mit In-

vestitionen in immer leistungsfähigere Beschneiungstechnik  reagieren,  bemüht

man sich in anderen Wintersportgebieten um den Aufbau schneeunabhängiger

Alternativangebote. Welche Herangehensweise sich langfristig als erfolgreich er-

weist, wird nicht nur vom weiteren Fortschreiten des anthropogenen Klimawan-

dels, sondern auch von der technischen Leistungsfähigkeit und wirtschaftlichen

Tragfähigkeit der Beschneiungstechnik, von deren touristischer und gesellschaft-

licher Akzeptanz sowie von der Nachfrage nach Angebotsalternativen abhängen.

Im Rahmen dieser Arbeit wird – auf Basis eines umfangreichen interdisziplinären

Literaturreviews – ein System zur Unterstützung von Entscheidungen für oder ge-

gen künstliche Beschneiung skizziert, als simpler Softwareprototyp realisiert und

dessen Einsatz am Beispiel des Wintersportorts Schierke im Harz demonstriert.

Abstract (English) | Keywords: Artificial Snow, Winter Sports, Tourism

Warmer winters,  less natural  snow, increased occurrence of  extreme weather

events and the creeping shift of optimal weather conditions for the production of

artificial snow to the period before Easter, call into question the long-term econo-

mic survival of many ski resorts. While some of the municipalities and private

operators affected by these changes are responding by investing in increasingly

efficient snow-making technology, other winter sports resorts are endeavouring to

develop snow-independent alternatives. What proves to be successful in the long

run will depend not only on the progress of anthropogenic climate change, but

also on the technical performance and economic viability of modern snow-making

technology, on the acceptance of technology-supported winter sports offers and

on the demand for alternatives. In this thesis – based on an extensive interdisci-

plinary literature review – a Decision Support System (DSS) for artificial snowma-

king is outlined, realized as a simple software prototype and its use demonstrated

by the example of the winter sports resort Schierke in the Harz Mountains.
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1. Einführung

1.1 Klima und Tourismus

Der Tourismus ist mit einem Anteil von etwa 9% am kumulierten Bruttoinlandspro-

dukt (BIP) aller Staaten (vgl. Bernhart et al. 2017, S. 6) sowie an nahezu 10% al-

ler Arbeitsplätze (vgl. Amelung et al. 2016, S. 46) eine der bedeutendsten und zu-

gleich wachstumsstärksten (vgl.  Reintinger 2016, S. 1) Branchen überhaupt: Al-

lein der internationale Tourismus ist seit 1950 von 25 Millionen Ankünften auf 1,2

Milliarden Ankünfte im Jahr 2015 angewachsen (vgl. Amelung et al. 2016, S. 46).

In einer touristisch geprägten Region wie den Alpen kommen 120 Millionen Gäste

auf gerade einmal 14 Millionen Einwohner (vgl. Bender et al. 2011, S. 403). Für

den bayerischen Wintersportort Garmisch-Partenkirchen bedeutet dies beispiels-

weise bei 27.000 Bürgerinnen und Bürgern und 1,3 Millionen Übernachtungs- so-

wie 5 Millionen Tagesgästen ein „Verhältnis von 223 Fremden pro Einwohner“

(Borck 2013, S. 1) – Zahlen, welche die enorme wirtschaftliche und soziale Be-

deutung des Tourismus erahnen lassen. Allein in Deutschland sichert der Touris-

mus nahezu 3 Millionen Jobs Arbeitsplätze – mehr als beispielsweise das Bank-

wesen, die Pflegewirtschaft oder die Automobilindustrie (vgl. Schmidt 2015, S. 9).

Mit dem Fortschreiten des anthropogenen Klimawandels ist zu beobachten, dass

sich die lokale Witterung an touristischen Destinationen zunehmend von einer

Ressource (sonnige Strände, verschneite Skipisten) zu einem limitierenden Fak-

tor wandelt (vgl. Reintinger 2016, S. 4). Gerade der Wintertourismus – und insbe-

sondere der Wintersporttourismus – ist von diesem Wandel in besonderem Maße

betroffen: Während die Attraktivität der Reiseorte für Skisportler wesentlich mit

den dortigen Witterungs- und damit Schneebedingungen verbunden ist, vollzieht

sich der Klimawandel in Gebirgsregionen zugleich deutlich schneller und mit hö-

herer Intensität als in anderen Klimazonen (vgl. Bender et al. 2011, S. 406).

Diese klimatischen Veränderungen äußern sich bereits heute in zahlreichen Ski-

gebieten weltweit, so unter anderem durch weniger Schneefall und verminderte

Schneesicherheit,  ein  weniger  „winterliches“  Landschaftsbild  mit  fehlendem

Schnee  und  (im  Hochgebirge)  verschwindenden  Gletschern,  ausbleibenden

Schnee während der Weihnachtsfeiertage, mehr Niederschläge in Form von Re-

gen und Starkregen, höhere Betriebs- und Investitionskosten durch die Beschnei-
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ung und den Aufbau von Angebotsalternativen sowie eine zunehmende Wahr-

scheinlichkeit für extreme Wetterereignisse und damit einhergehende Bedrohun-

gen wie Überschwemmungen und Erdrutsche (vgl. u.a. Gebhardt et al. 2011, S.

84;  Müller et al. 2013, S. 1;  Dawson & Scott 2010, S. 220;  Abegg 2011, S. 17;

Tölzer & Schaffler 2017; S. 26). In zahlreichen mitteleuropäischen Wintersportor-

ten kam es in den dort besonders warmen Wintersaisons 2005/2006, 2006/2007

und 2013/2014 schon zu Besucherausfällen  in  einem für  touristische Akteure

existenzbedrohendem Umfang (vgl. u.a. Tölzer & Schaffler 2017; S. 27).

Die Wintersportindustrie versucht diesem Problem derzeit  primär durch techni-

sche Anpassungsmaßnahmen entgegenzuwirken, deren wichtigste die energiein-

tensive  und ökologisch umstrittene Produktion von sogenanntem technischem

Schnee bzw. Kunstschnee ist. Die Tourismuswirtschaft ist damit zugleich Opfer

wie auch – insbesondere aufgrund des durch sie verursachten Verkehrsaufkom-

mens mit 8% der weltweiten Treibhausgasemissionen (vgl.  Lupp et al. 2013, S.

69) – ein wesentlicher Treiber des Klimawandels (vgl. Bischof et al. 2017, S. 223;

Ackermann 2014, S. 34). Sie ist daher ein hochinteressantes Studienobjekt mit

Blick auf die Entwicklung und Umsetzung von Strategien zum Umgang mit dem

Klimawandel durch das kollaborative Wirken individueller Wirtschaftsakteure.

1.2 Zielstellung und Struktur

Im Rahmen dieser Arbeit wird versucht, den aktuellen Stand der wissenschaftli-

chen Debatte um die ökologischen Folgen sowie um die technische und wirt-

schaftliche  Zukunftsfähigkeit  künstlicher  Beschneiung  über  ein  interdisziplinär

ausgelegtes Literaturreview abzubilden. Hierfür wurden deutsch- und englisch-

sprachige Publikationen aus verschiedenen relevanten Fachrichtungen wie etwa

der Klimatologie,  der Geologie,  der Hydrologie, den Ingenieurswissenschaften,

den Wirtschaftswissenschaften und der Konsumentenpsychologie aus den Jah-

ren 2009 bis 20181 identifiziert, kategorisiert und ausgewertet. Die methodische

1 Der gewählte Zeitraum endet bereits 2018, um Inkonsistenzen durch Neuveröffen-

tlichungen während der laufenden Recherchen zu vermeiden. Er beginnt 2009, da

aufgrund der dynamischen Erkenntnisentwicklung im Feld der Klima(folgen)forschung

davon ausgegangen wird, dass Beiträge mit einem Alter von über zehn Jahren von

untergeordneter Relevanz für die zu betrachtenden Forschungsfragen sind.
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Vorgehensweise sowohl bei der Literaturauswahl als auch bei der Auswertung

der aufgefundenen Literatur ist Gegenstand der Ausführungen in Kapitel 2.

Die aus diesem Literaturreview gewonnenen Erkenntnisse werden im ersten Teil

der Arbeit vorgestellt, wobei neben der Historie und grundsätzlichen Funktions-

weise von künstlicher Beschneiung (Kapitel 3) auch deren Auswirkungen auf Flo-

ra, Fauna, Bodenqualität, Landschaftsbild und Wasserhaushalt (Kapitel 4) sowie

deren wirtschaftliche Bedeutung und gesellschaftliche Akzeptanz (Kapitel 5) be-

trachtet werden. Der Fokus liegt dabei auf der vergleichenden und wertenden Zu-

sammenführung von Erkenntnissen aus den verschiedenen Fachdisziplinen. Die-

se systematische Übersicht stellt den inhaltlichen Kern dieser Arbeit dar.

Die über das Literaturreview geschaffene Informationsbasis wird im zweiten Teil

der Arbeit weiter verdichtet und mit aktuellen Ergebnissen der Klimaforschung zu-

sammengeführt (Kapitel 6), um die Grundlage für ein ökologisches und betriebs-

wirtschaftliches Decision Support  System (DSS,  engl.  für  Entscheidungsunter-

stützungssystem) zu schaffen, welches im weiteren Verlauf der Arbeit in Grund-

zügen skizziert und als einfacher Softwareprototyp realisiert wird (Kapitel 7). Der

praktische Einsatz dieses DSS wird anschließend am Beispiel des Wintersport-

orts Schierke im Harz – einem deutschen Mittelgebirge – demonstriert (Kapitel 8).

Ein abschließendes Fazit (Kapitel 9) fasst den derzeitigen wissenschaftlichen Er-

kenntnisstand zur Zukunftsfähigkeit künstlicher Beschneiung zusammen und bie-

tet einen Ausblick auf die zur Weiterentwicklung des DSS-Prototypen bis hin zu

einer kommerziell nutzbaren Software noch erforderlichen Arbeitsschritte.
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2. Literaturauswahl

2.1 Methodisches Vorgehen

Zur Schaffung einer Informationsbasis für das zu konzeptionierende DSS wurde

zwischen dem 20.01.2019 und dem 03.02.2019 eine umfassende Literaturrecher-

che in verschiedenen akademischen Suchmaschinen, akademischen Social Net-

works und akademischen Repositorien durchgeführt. Die dabei erfassten Publi-

kationen mussten alle der hier nachfolgend aufgeführten Kriterien erfüllen:

• Die Publikation muss in deutscher oder englischer Sprache erfolgt sein.

• Die Publikation muss im Zeitraum zwischen 2009 und 2018 erfolgt sein.

• Die Publikation muss entweder vollständig frei verfügbar (Open 

Access) sein oder über das Campus-Netz der Hochschule Harz 

(dem aktuellen Arbeitsplatz des Autors) abgerufen werden können.

• Die Publikation muss über mindestens eine/n von zehn 

Suchbegriffen oder Suchbegriffskombinationen auffindbar 

sein, die auf den nachfolgenden Seiten aufgeführt werden.

• Die Publikation muss über mindestens eine/s von zwölf 

Suchmaschinen, Social Networks oder Repositorien auffindbar 

sein, die ebenfalls auf den nachfolgenden Seiten aufgeführt werden.

• Titel und / oder Abstract müssen erkennen lassen, dass die 

Publikation ökonomische, ökologische, technische, politische 

oder gesellschaftliche Aspekte künstlicher Beschneiung berührt.

Als für das Thema der Arbeit wesentliche Suchbegriffe wurden auf Basis einer in-

itialen qualitativen Recherche in deutscher Sprache

• „Kunstschnee“, 

• „Beschneiung“, 

• „Künstlicher Schnee“, 

• „Technischer Schnee“ 
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• und „Schneesicherheit“ 

sowie in englischer Sprache

• „Snow-Making“, 

• „Snowmaking“, 

• „Artificial Snow“, 

• „Technical Snow“ 

• und „Snow Reliability“

festgelegt. Die Suche wurde über die akademischen Suchmaschinen

• EconBiz2, 

• OpenGrey3, 

• Science.gov4, 

• Google Scholar5, 

• Microsoft Academic Search6, 

• BASE (Bielefeld Academic Search Engine)7 

• und das DOAJ (Directory of Open Access Journals)8 

sowie über die akademischen Sozialen Netzwerke

• Academia9, 

• Mendeley10 

2 http://www.econbiz.de

3 http://www.opengrey.eu

4 http://www.science.gov

5 http://scholar.google.de

6 http://academic.microsoft.com

7 http://www.base-search.net

8 http://www.doaj.org

9 http://www.academia.com

10 http://www.mendeley.com
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• und ResearchGate11 

und die akademischen Repositorien

• arXiv12 

• und SSOAR (Social Science Open Access Repository)13 

durchgeführt. Darüber hinaus wurde die an der Hochschule Harz gegebene Mög-

lichkeit des Vollzugriffs auf die Statistik-Datenbank Statista14 genutzt, um Daten-

sätze zu identifizieren, die mit den oben aufgeführten zeitlichen und thematischen

Suchkriterien korrespondieren. Da die Suche auf Publikationen begrenzt wurde,

die innerhalb eines bereits abgeschlossenen Zeitraums (2009 bis 2018) erschie-

nen sind,  ist  die  Verteilung der  Recherchetätigkeiten auf  den vergleichsweise

breiten Zeitrahmen von drei Wochen als unkritisch zu werten.

Erfasst wurden dabei peer-reviewte Artikel aus Fachzeitschriften und Konferenz-

bänden,  wissenschaftliche Monografien,  Hochschulschriften  (insbesondere Ab-

schlussarbeiten) sowie graue Literatur wie etwa Projektberichte oder politische

Strategiepapiere. Während alle erfassten Quellen bei der Erstellung des theoreti-

schen Teils dieser Arbeit berücksichtigt werden, fand die graue Literatur keinen

Eingang in die Ausgestaltung des DSS. Von der in Meta-Studien nicht unüblichen

Auswertung von Abstracts nicht verfügbarer Publikationen wurde explizit abgese-

hen, da nicht davon ausgegangen werden konnte, dass ein Abstract die für die

Übernahme von Angaben in das DSS erforderliche Detailtiefe besitzt.

2.2 Quantitatives Ergebnis

Die Recherche erbrachte 401 Treffer bei den deutschsprachigen und 524 Treffer

bei den englischsprachigen Suchanfragen. Die insgesamt 925 Publikationen wur-

den zur weiteren Auswertung in Citavi15  – einer Software zur Literaturverwaltung

und Wissensorganisation – erfasst. Durch den Wegfall von Dubletten (zahlreiche

Veröffentlichungen  wurden  erwartbar  mehrfach  gefunden)  reduzierte  sich  die

Zahl der zu sichtenden Publikationen zunächst auf 472. Über die Anfrage-Funkti-

11 http://www.researchgate.net

12 http://www.arxiv.org

13 http://www.gesis.org/ssoar/

14 http://de.statista.com

15 https://www.citavi.com
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on von ResearchGate wurden 57 nicht öffentlich verfügbare Veröffentlichungen

bei den Autorinnen und Autoren angefordert, von denen jedoch nur fünf weitere

im Volltext zur Verfügung gestellt werden konnten. Insgesamt wurden somit 477

Titel im Volltext erfasst. Nach Dokumenttypen unterteilt befanden sich darunter

• 240 größtenteils peer-rewiete Beiträge in Fachzeitschriften,

• 41 größtenteils peer-reviewte Beiträge in Konferenzbänden,

• 59 akademische Abschlussarbeiten,

• 38 Monografien oder Kapitel in Sammelbänden sowie

• 99 Dokumente, die dem Bereich der grauen Literatur zuzuordnen sind.

Die Verteilung der Treffer auf Fundstellen und Suchanfragen wird in Anhang A

dargestellt. Die in beiden Tabellen eingefügte Spalte „Zusatz“ enthält die Anzahl

an Publikationen, die nicht direkt über die Suchanfragen, sondern über die Emp-

fehlungsmechanismen der jeweiligen Plattform aufgefunden wurden.

Die interdisziplinäre Natur des bearbeiteten Themas zeigt sich bereits deutlich in

der  Verteilung der  aufgefundenen Publikationen (außer  grauer  Literatur)  nach

fachlicher Herkunft. Hier dominieren mit der Tourismuswirtschaft (104 Publikatio-

nen) und den Umweltwissenschaften (55 Publikationen) zwei bereits stark inter-

disziplinär ausgerichtete Fachrichtungen. Auf die Klimaforschung entfallen 32, auf

die Geowissenschaften 27 und auf die Hydrologie 23 Veröffentlichungen, wäh-

rend 23 Publikationen den Wirtschaftswissenschaften, 22 der Biologie, 20 den In-

genieurswissenschaften und 19 der Physik zuzuordnen sind. Die verbleibenden

53 Beiträge teilen sich auf 14 weitere Disziplinen und Subdisziplinen auf, zu de-

nen u.a. die Informatik (6),  die Medienforschung (2),  die Politikwissenschaften

(7), die Rechtswissenschaften (4) und die Meteorologie (7) gehören.

Um den üblichen Umfang einer Masterarbeit nicht wesentlich zu überschreiten,

wird es nicht möglich sein, im Rahmen der nachfolgenden Kapitel auf jede der

477 erfassten Quellen einzugehen. Alle direkt genutzten Quellen werden entspre-

chend referenziert und finden sich im Literaturverzeichnis dieser Arbeit. Die Ge-

samtheit der 477 Quellen wird dieser Arbeit im Volltext zusammen mit der oben

erwähnten Citavi-Datenbank als DVD-Anhang beigefügt.
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Zur kritischen Einordnung der Rechercheergebnisse ist anzumerken, dass – ob-

wohl die peer-reviewte Literatur den größten Anteil ausmacht – eine bewusste

Aufnahme von nicht peer-reviewten Quellen erfolgte. Während Monografien und

Buchbeiträge eine zentrale Rolle in der Weiterverbreitung wissenschaftlicher Er-

kenntnisse spielen und ihre Erfassung somit gerechtfertigt ist, erfolgte die Auf-

nahme von akademischen Abschlussarbeiten vor dem Hintergrund, dass diese

aufgrund ihrer Bewertung eine mit dem Peer Review vergleichbare Qualitätskon-

trolle durchlaufen. Graue Literatur  – wie etwa politische Positionspapiere oder

Wirtschaftsberichte von Seilbahnbetreibern und Kommunen – hat wiederum eine

wesentliche Bedeutung für die im Rahmen dieser Arbeit betrachteten Entschei-

dungsfindungsprozesse zu Wintersport-Investitionen, welche die Bedeutung klas-

sischer wissenschaftlicher Publikationen derzeit noch deutlich übersteigen dürfte.

Als Einschränkung ist  die den Sprachkenntnissen des Autors geschuldete Be-

grenzung auf Publikationen in deutscher und englischer Sprache zu werten, die

u.a.  zum Ausschluss  relevanter  französischsprachiger  Dokumente  zur  künstli-

chen Beschneiung in den Pyrenäen geführt hat. Angesichts des Umstands, dass

– wie oben erwähnt – schon eine vollständige Auswertung aller 477 erfassten

Quellen den üblichen Umfang einer Masterarbeit überschreiten würde, stellt die

Exklusion im Rahmen dieser Arbeit zwar keine wesentliche Einschränkung dar –

für die in Kapitel 9.2 skizzierte Weiterentwicklung des DSS zu einer kommerziell

nutzbaren Software, ist die Auswertung dieser Quellen dagegen anzuraten.
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3. Künstliche Beschneiung

3.1 Historische Entwicklung

3.1.1 Entwicklung des Skitourismus

Während Skier als Fortbewegungsmittel dem Menschen schon in prähistorischer

Zeit bekannt gewesen sind und deren Nutzung etwa im skandinavischen Raum in

Antike und Mittelalter nachgewiesen ist (vgl. Gray 2017, S. 78), wurden Skifahren

und Skispringen als Sport- und Freizeitaktivitäten erst Mitte des 19. Jahrhunderts

in Norwegen populär und breiteten sich von dort innerhalb weniger Jahrzehnte in

Europa aus (vgl. Düwell 2015, S. 1), wobei vor allem die Alpen – bis dahin eher

Reiseziel  einzelner wohlhabender Abenteurer  und Bergsportler  (vgl.  Berchten-

breiter 2014, S. 7) – als Destination entdeckt wurden. Diese Entwicklung wurde

wesentlich durch die Etablierung der Eisenbahn als Langstrecken-Verkehrsmittel

für große Personenzahlen begünstigt, durch die Hochgebirge wie Alpen und Py-

renäen leichter zugänglich wurden (vgl. Borck 2013, S. 5, Schmidt 2015, S. 7).

Die touristische Erschließung der Alpen begann um 1880 mit der Anlage des bis

heute bestehenden Netzes von Schutzhütten und Wanderwegen sowie verstärk-

ten Investitionen in luxuriöse Großhotels, Zahnrad- und Seilbahnen sowie Skiloi-

pen für eine kleine, aber zahlungskräftige europäische Oberschicht (vgl.  Berch-

tenbreiter 2014, S. 7). Die Intensität dieser Erschließung führte bereits um die

Jahrhundertwende zu erster  ökologisch motivierter  Kritik  aus den Reihen des

Deutschen Alpenvereins (DAV) oder des 1900 in München gegründeten Vereins

zum Schutze und zur Pflege der Alpenpflanzen (vgl. Haane 2017, S. 1), der noch

bis heute als Verein zum Schutz der Bergwelt (VzSB) fortbesteht.

Als wichtige, die weitere Entwicklung des Skitourismus begünstigende Faktoren

gelten die Einführung von Seilbahnen mit gespannten Tragseilen zu Beginn des

20. Jahrhunderts (vgl.  Walser 2013, S. 32), die Aufnahme des Skisports in das

Portfolio der Olympischen Spiele mit den Spielen von Garmisch-Partenkirchen im

Jahr 1936 (vgl.  Düwell 2015, S. 3) und der Boom des Massentourismus in den

1960ern und 1970ern, der aus dem einstigen Oberschichtensport ein Massenver-

gnügen machte (vgl. Halmheu 2018, S. 1; Freppaz et al. 2013, S. 46).
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Heute bewegt der Skitourismus jährlich rund 400 Millionen Menschen (vgl. Demi-

roglu 2016, S. 8) und ist für viele Wintersportgebiete von überragender wirtschaft-

licher Bedeutung. In den Alpen – neben den Rocky Mountains in den USA die

wichtigste Wintersportregion der Welt (vgl. Buckley 2017, S. 244) – generiert der

Wintertourismus (der primär ein Wintersporttourismus ist) jährliche Umsätze von

50 Milliarden Euro und trägt jeden zehnten Arbeitsplatz (vgl. Balbi 2012, S. 1; zur

ökonomischen Bedeutung des Skitourismus siehe auch Kapitel 5.1).

3.1.2 Entwicklung der künstlichen Beschneiung

Das erste Patent für eine Schneelanze wurde im Jahr 1954 in den USA ausge-

stellt, das erste Patent für eine Schneekanone (zu den Unterschieden zwischen

diesen beiden bis heute dominierenden Beschneiungstechniken siehe auch Kapi-

tel 3.2) folgte vier Jahre später (vgl. Noguera 2018, S. 4). Während in den USA

(beginnend 1952 im Grossinger Resort im Bundesstaat New York; vgl.  Yang &

Wan 2010, S.  58) schon seit  den 1950ern punktuell  beschneit  wurde,  kamen

Schneekanonen in Europa – zunächst ebenfalls punktuell – erst in den 1970ern

(in Österreich und der Schweiz) sowie in Deutschland ab Ende der 1980er zum

Einsatz (vgl. Lang & Lang 2009, S. 6; Snajdr 2012, S. 3; Benoit 2012, S. 23).

Nachdem es in den 1980ern in den Alpen erstmals zu witterungsbedingten Saiso-

nausfällen kam (vgl. Yang & Wan 2010, S. 56), erfolgte ein sukzessiver Übergang

von einer punktuellen und den Naturschnee lediglich ergänzenden hin zu einer

flächendeckenden und fehlenden Naturschnee ersetzenden Beschneiung. Die in

Europa besonders schneearme Wintersaison von 2006/2007 löste einen weiteren

Investitionsschub in künstliche Beschneiung aus – laut Trawöger & Steiger 2012

ein Anzeichen dafür, „dass derartige Investitionen hauptsächlich als Reaktion auf

vergangene Ereignisse und nicht vorausschauend auf mögliche zukünftige Ver-

änderungen getätigt werden“ (S. 27). Medial breiter wahrgenommene Debatten

über  die ökologischen Folgen künstlicher  Beschneiung finden seit  Beginn der

2000er statt (vgl. Loubier et al. 2010, S. 1). 

Wie rasant sich die Flächendeckung von Beschneiung entwickelt hat, verdeutli-

chen einige durch den Statistikdienst Statista zusammengestellte Zahlen: Der An-

teil der technisch beschneibaren Pistenflächen in der Schweiz ist von weniger als

5% im Jahr 1991 auf fast 50% im Jahr 2017 gestiegen, in Österreich wurden im

gleichen Jahr schon 70%, in Italien sogar 87% aller Pistenflächen künstlich be-
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schneit (siehe Abbildung 1). Allein in Österreich wurden im Jahr 2017 rund 51 Mil-

lionen Euro mit dem Verkauf von etwa 2.150 neuen Beschneiungsanlagen umge-

setzt, für 2019 wird ein Zuwachs um weitere 5 Millionen Euro prognostiziert. Auch

außerhalb Europas lässt sich eine Tendenz zu mehr Beschneiung beobachten –

so hat sich etwa in China die Zahl der Schneekanonen von rund 700 im Jahr

2015 auf über 1.400 im Jahr 2017 in nur zwei Jahren mehr als verdoppelt.

In Frankreich und Deutschland ist die Schneeproduktion im Vergleich mit den üb-

rigen Alpenländern weniger stark verbreitet, die Tendenz zu mehr Beschneiung

ist aber auch hier klar erkennbar: Laut Demiroglu 2016 (S. 20) kommt Beschnei-

ungstechnik derzeit in 121 von 595 deutschen Skigebieten zum Einsatz.

3.2 Stand der Technik

3.2.1 Entstehung von Naturschnee

Die Entstehung von natürlichem Schnee in der Atmosphäre setzt voraus, dass

die Lufttemperatur unter 0°C liegt, die Luftfeuchtigkeit ausreichend hoch ist (also
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Wasserdampf  vorhanden  ist)  und sich  Partikel  (z.B.  Meeressalz,  Blütenpollen

oder Stickstoffteilchen) in der Luft befinden, die als Kristallisationskeime dienen

können (vgl.  Schneider 2014, S. 11).  Sind diese Bedingungen erfüllt,  so kann

Wasserdampf  an  den  Kristallisationskeimen kondensieren  und  Schneekristalle

bilden, die in Abhängigkeit von Temperatur und Grad der Übersättigung äußerst

heterogene und hochkomplexe Formen annehmen können (zu sehen etwa in den

von  Schneebeli 2015 angefertigten Mikrotomographie-Aufnahmen von Schnee-

kristallen und den in diesen ablaufenden Veränderungsprozessen im Zeitraffer).

Schneekristalle durchlaufen während ihres Alterungsprozesses noch weitere Me-

tamorphosen und bilden sich mehrfach fast vollständig neu (ebd., S. 130).

3.2.2 Produktion von Kunstschnee

Zur Herstellung von künstlichem Schnee wird ein Gemisch aus (ggf. zuvor herun-

tergekühltem) Wasser  und Kristallisationskeimen sowie  – je  nach Art  der  Be-

schneiungstechnik – auch Luft mit hoher Geschwindigkeit über ein Düsensystem

in die Atmosphäre gesprüht. Kühlen sich die Wassertröpfchen während des Flugs

durch eine Teilverdunstung so weit ab, dass sie noch in der Luft an den Keimen

gefrieren können, erreichen sie als Eiskügelchen den Boden (vgl. Benoit 2012, S.

26 ff; Olefs et al. 2010, S. 1098; de Jong et al. 2012, S. 2). Als Kristallisationskei-

me können ohnehin in der Atmosphäre vorkommende Stoffe oder Beschneiungs-

zusätze wie SNOMAX (siehe Kapitel 3.2.4) zum Einsatz kommen.

Technisch ist  zwischen  den  beiden  marktdominanten Technologien der  Hoch-

druckdüsentechnik und der  Niedrigdruckdüsentechnik sowie sonstigen Formen

der Kunstschneeerzeugung zu unterscheiden (vgl. Bieger et al. 2019, S. 10). Bei

der Hochdruckdüsentechnik wird Druckluft mit Wasser und Kristallisationskeimen

vermischt und in die Atmosphäre gesprüht, während bei der Niedrigdruckdüsen-

technik Umgebungsluft angesaugt und an einer Wasserdüse vorbeigeführt wird,

die gekühltes (und mit Kristallisationskeimen versetztes Wasser) in den Luftstrom

abgibt. Der Hauptunterschied zwischen den Ansätzen besteht somit darin, dass

die Schneeerzeugung bei der Hochdruckdüsentechnik mit eigens herangeführter

Druckluft erfolgt, während bei der Niedrigdruckdüsentechnik auf die Umgebungs-

luft zurückgegriffen wird (vgl. Benoit 2012, S.29 ff; Olefs et al. 2010, S. 1098). 
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Hochdruckdüsensysteme haben meist die Form von bis zu 10 m hohen Schnei-

oder Schneelanzen (um den in größeren Höhen stärkeren Luftzug auszunutzen,

siehe Abbildung 2), während Niedrigdruckdüsensysteme als kompaktere Schnee-

kanonen vertrieben werden. Schneelanzen zeichnen sich gegenüber Schneeka-

nonen durch eine geringere Lärmentwicklung, eine höhere Wartungsfreundlich-

keit, einen geringeren Energieverbrauch und einen höheren Output aus. Schnee-

kanonen sind dafür  aufgrund ihrer  geringeren Höhe weniger  windanfällig  und

können als transportable Geräte hergestellt und somit flexibel eingesetzt werden

(vgl. Noguera 2018, S. 5; Schneider 2014, S. 19; Lang & Lang 2009, S. 7).

Zu den weiteren, weniger verbreiteten Technologien gehören die (teure)  Kryo-

technik, bei der das Wasser mit einem Kühlmittel wie z.B. flüssigem Stickstoff

vermischt wird, um auch bei Plusgraden beschneien zu können, das Ausbringen

von in Kühlhallen produziertem und maschinell zerstoßenem Eis auf die Pisten

(aus Sicht von Skifahrerinnen ein Ersatz niederer Qualität) oder auch das Cloud

Seeding, bei dem Kristallisationskeime per Flugzeug in der Atmosphäre ausge-
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bracht werden, um die natürliche Schneebildung zu beschleunigen (ebenfalls teu-

er und mit allen Nachteilen der Eigenschaften von Naturschnee verbunden, siehe

hierzu Kapitel 3.2.3). Weitere alternative Systeme zur Schneeproduktion, die der-

zeit (noch) nicht zu konkurrenzfähigen Preisen bzw. noch gar nicht am Markt ver-

fügbar sind, werden in Dieseth 2016 und Schabschneider 2013 vorgestellt.

Beschneit  wird in zwei Phasen: Während des Einschneiens wird zum frühest-

möglichen Zeitpunkt über mehrere Tage so viel Schnee wie möglich produziert

(und im Falle einer Überproduktion gelagert), um das Weihnachtsgeschäft abzu-

sichern; während der Saison erfolgen dann nach Bedarf, Witterung und Wasser-

verfügbarkeit weitere Nachbeschneiungen (vgl.  Lang & Lang 2009, S. 10; diese

aufgrund der niedrigen Temperaturen meist nachts, vgl. Radmann 2012, S. 36).

3.2.3 Eigenschaften von Kunstschnee

Da sich die Herstellung von Kunstschnee erheblich vom Entstehungsprozess von

Naturschnee unterscheidet,  unterscheiden sich auch die Ergebnisse. Während

Naturschnee eine kristalline Struktur aufweist, besteht Kunstschnee aus runden

Eiskörnern mit Durchmessern zwischen 0,1 mm und 0,8 mm. Im Vergleich mit

Naturschnee ist Kunstschnee bis zu 4 mal dichter sowie bis zu 50 mal härter, bin-

det deutlich mehr Wasser und weist eine größere Resilienz gegenüber höheren

Temperaturen und Regen auf (vgl. de Jong et al. 2017, S. 217; Lintzen 2013, S.

18; Lintzen & Edeskär 2012, S. 8). Während die mittlere Dichte von Naturschnee

bei 100 kg/m³ liegt, weist technischer Schnee eine durchschnittliche Dichte von

480 kg/m³ auf (vgl. Benoit 2012, S. 27 f), wobei eine Dichte zwischen 400 kg/m³

und 450 kg/m³ als für den Skisport ideal gilt (vgl. Schneider 2014, S. 37).

Aufgrund der höheren Resilienz lässt sich Kunstschnee wirtschaftlich besser ver-

werten als Naturschnee, was paradoxerweise dazu geführt hat, dass weniger na-

türlicher Schneefall  (bei gleichzeitig geeigneten Witterungsbedingungen für die

Produktion von Kunstschnee) von vielen Pistenbetreibern inzwischen dem natür-

lichen Schneefall vorgezogen wird. So wurde beispielsweise in einer von Trawö-

ger & Steiger 2012 durchgeführten Erhebung unter 24 Vertreterinnen von Touris-

musverbänden und Seilbahnen in Tirol angegeben, dass diese „große Mengen

an Naturschnee […] als Kostenfaktor  (höherer Aufwand bei  der Präparierung)

und  Qualitätsproblem  (Kundenbeschwerden  bei  zu  weichen  Naturschnee-Pis-

ten)“ betrachten (S. 28). Aufgrund der größeren Dichte von technischem Schnee
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ist zudem weniger Schnee erforderlich, um einen Skibetrieb zu gewährleisten –

so schätzt beispielsweise  Lintzen 2012 (S. 7), dass bis zu 40 cm Naturschnee

durch lediglich 10 cm Kunstschnee ersetzt werden können.

3.2.4 Verwendung von Beschneiungszusätzen

Zur Förderung des Kristallisationsprozesses können dem zur Beschneiung ver-

wendeten Wasser Additive beigefügt werden, die als zusätzliche Kristallisations-

keime dienen und damit eine Beschneiung bei höheren Temperaturen gestatten

(vgl. Abegg 2011, S.14; Gray 2017, S. 75). Bei dem meistverwendeten Beschnei-

ungszusatz handelt es sich um ein biologisches Produkt, das unter der Bezeich-

nung SNOMAX durch die Snomax LLC mit Sitz in den USA vertrieben wird16. 

SNOMAX wird aus durch Bestrahlung oder Gefriertrocknung sterilisierten Bakteri-

en der Art  Pseudomonas syringae hergestellt. Stamm 31a dieser Art produziert

ein Protein, welches sich als Kristallisationskeim eignet und die Produktion von

Kunstschnee schon bei einer Feuchttemperatur von -2°C (und damit bei Lufttem-

peraturen oberhalb von 0°C) gestattet (vgl. Benoit 2012, S. 100; zum Zusammen-

hang von Lufttemperatur und Feuchttemperatur siehe Kapitel 3.3). Unter Einsatz

von SNOMAX produzierter Schnee weist eine geringere Dichte als herkömmli-

cher Kunstschnee (aber eine höhere Dichte als Naturschnee) auf.  Der Zusatz

wird dem Wasser im Mengenverhältnis 0,9 g je 1.000 l beigegeben und sorgt im

Regelfall für eine 40%-ige Steigerung der produzierten Schneemenge (vgl. Her-

stellerangaben zitiert in Dieseth 2016, S. 11). Inaktive Bakterien von Typ Pseudo-

monas syringae kommen neben der Kunstschneeherstellung u.a. auch bei der

Produktion gefrorener Lebensmittel zum Einsatz (vgl. Lit et. al 2012, S. 1097).

Die möglichen ökologischen Folgen des SNOMAX-Einsatzes sind gegenwärtig

noch umstritten. Während dem Additiv etwa von  Gray 2017 (S. 75 f.) attestiert

wird, im Boden lebende Insektenarten wie Fadenwürmer zu schädigen, indem es

die Menge an ungefrorenem Wasser herabsetzt und damit den Lebensraum die-

ser Tiere einschränkt, werden in Benoit 2012 (S. 100) Studien zusammengefasst,

deren Ergebnisse nahelegen, dass die größere Lockerheit und geringere Dichte

von mit SNOMAX erzeugtem Schnee die unter Kunstschneedecken zu beobach-

tende Verzögerung der Entwicklung von Pflanzen abmildern (zu den Auswirkun-

gen von Kunstschnee auf die Flora siehe Kapitel 4.3).

16 http://www.snomax.com
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Ebenfalls umstritten ist die Frage, ob sich der Einsatz von SNOMAX oder anderer

Beschneiungszusätze auf die menschliche Gesundheit auswirken kann. Obwohl

die sterilisierten Bakterien sich nicht reproduzieren können und auch keine unmit-

telbare toxische Wirkung entfalten, sollten sie in einen menschlichen (oder tieri-

schen)  Kreislauf  gelangen,  steht  die Verwendung von SNOMAX im Verdacht,

Lungenentzündungen und Hauterkrankungen bei Personen auszulösen, die sich

häufig in direkter Nähe von Schneelanzen oder Schneekanonen aufhalten (vgl.

Snajdr 2012, S. 7). Nicht auszuschließen sind zudem allergische Reaktionen (vgl.

Gray 2017, S. 76) sowie die Nutzung von Pseudomonas syringae als Nährboden

durch andere (pathogene) Bakterien. Von der Mehrzahl der Autorinnen und Auto-

ren wird das Produkt aber als gesundheitlich unbedenklich eingeschätzt.

Aufgrund der Restunsicherheiten und insbesondere der fehlenden Langzeitstudi-

en zum dauerhaften Verbleib der Additive in der Umwelt (vgl.  Benoit 2012, S.

100), ist die Nutzung von biologischen und chemischen Beschneiungszusätzen

wie SNOMAX derzeit in Deutschland und Österreich nicht zulässig. In den USA

kommen derartige Hilfsmittel dagegen breit zum Einsatz (vgl. Steiger 2010, S. 5).

3.3 Witterungsbedingungen

Die Produktion von Kunstschnee ist nicht immer möglich, sondern hängt – neben

der Verfügbarkeit von Wasser – vor allem von den Witterungsbedingungen am zu

beschneienden Standort ab. Die Mehrzahl der Publikationen, in denen Aussagen

zu den Rahmenbedingungen von Beschneiung getroffen werden, fokussiert auf

zwei Parameter: Die Lufttemperatur sowie die Luftfeuchtigkeit (d.h. den prozentu-

alen Anteil des Wasserdampfs am Luftgemisch).

So muss etwa laut Deutschem Skiverband für eine effektive Beschneiung eine

Temperatur von -2°C oder weniger bei einer Luftfeuchtigkeit von unter 80 % ge-

geben sein (vgl. Usinger 2015, S. 42), während Joemann et al. 2017 die Grenze

bei -2,5°C und de Jong et al. 2017 (S. 218) bei -3°C oder weniger bei gleichzeitig

möglichst niedriger Luftfeuchtigkeit ziehen. Die untere Temperaturgrenze der Be-

schneibarkeit liegt bei -20°C (vgl. Bones 2009, S. 67). Allen Aussagen ist gemein,

dass sie einen Bezug zwischen Lufttemperatur und Luftfeuchtigkeit herstellen. 

Beide Parameter müssen somit in ihrem Zusammenspiel berücksichtigt werden:

Je niedriger die Luftfeuchtigkeit, umso wärmer darf es während der Kunstschnee-
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produktion noch sein; je höher die Luftfeuchtigkeit, umso geringere Temperaturen

werden für die Beschneiung benötigt (vgl. u.a. Olefs et al. 2010, S. 1100; Lintzen

2013, S. 18; Bones 2009, S. 67). Ist die Luft ungesättigt (d.h. weist sie eine nied-

rige Luftfeuchtigkeit auf), fördert dies die Bildung von Kunstschnee, da dann das

Wasser auf der Oberfläche eines von einer Schneekanone oder Schneelanze in

die Luft abgegebenen Wassertröpfchens besser verdunsten kann, wodurch sich

– bei entsprechend geringer Lufttemperatur – wiederum die Abkühlung des ver-

bleibenden Tröpfchens beschleunigt (vgl. Benoit 2012, S. 26 ff).

Der für die Beschneiung entscheidende Parameter ist damit die Feuchttempera-

tur (auch als  Feuchtkugeltemperatur oder  Kühlgrenztemperatur bezeichnet),  in

deren Berechnung sowohl die Lufttemperatur als auch die Luftfeuchtigkeit einge-

hen. Die Feuchttemperatur ist als die kühlste Temperatur definiert, die bei gege-

bener  Lufttemperatur  und  Luftfeuchtigkeit  durch  Verdunstung  erreicht  werden

kann (vgl. Benoit 2012, S. 34). Wie Schneider 2014 ausführt, liegt die Feuchttem-

peratur „aufgrund der Verdunstungskälte [und] in Abhängigkeit von der relevanten

Luftfeuchte unterhalb der Lufttemperatur. Die Temperaturabsenkung ist [...] umso

größer, je trockener die umgebende Luft ist“ (S. 9).

Zur Bestimmung der Feuchttemperatur existiert eine u.a. in Benoit 2012 genutzte

empirische Näherungsformel, die durch das im US-Bundesstaat Vermont ansäs-

sige Unternehmen Mountain View Inc. entwickelt wurde und die ohne den Luft-

druck als zusätzliche Variable auskommt17. Die Ergebnisse sind nur im Wertebe-

reich zwischen -17,8°C und 4,5°C gültig und verlieren an Genauigkeit, je weiter

sich die Lufttemperatur von dieser Temperaturspanne entfernt – was in der Be-

schneiungspraxis in Mitteleuropa allerdings kaum eine Rolle spielt, da Tempera-

turen unterhalb von -17,8°C selten eintreten und bei Temperaturen oberhalb von

4,5°C ohnehin nicht mehr beschneit werden kann. Die Formel soll in dem zu kon-

zipierenden DSS (siehe hierzu Kapitel 7.2) zur Anwendung kommen.

FT =(-5,806+0,672*T-0,006*T*T+(0,061+0,004*T+0,000099*T*T)*L+(-0,000033-

0,000005*T-0,0000001*T*T)*L*L) 

FT = Feuchttemperatur

T = Lufttemperatur

L = Luftfeuchtigkeit

17 http://www.the-snowman.com/wetbulb2.html
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Eine wesentliche weitere Rahmenbedingung der Kunstschneeproduktion ist die

Abwesenheit von zu starkem Wind. Während Wind zur Produktion von techni-

schem Schnee grundsätzlich benötigt wird (siehe hierzu Kapitel 3.2), damit eine

Wärmeabfuhr stattfinden kann (vgl. Lintzen 2012, S.), gehen Olefs et al. 2010 (S.

1000) zufolge auch unter Windbedingungen, die eine Beschneiung ermöglichen,

zwischen 5% und 15% des durch Schneekanonen und zwischen 15% und 40%

des durch Schneelanzen produzierten technischen Schnees durch Verwehung

verloren. Bei zu hohen Windgeschwindigkeiten ist eine Beschneiung nicht mehr

sinnvoll, da ein Großteil des produzierten Schnees unmittelbar verweht werden

würde. Auch wenn sich in der gesichteten Literatur kein konkreter Schwellwert

finden ließ, wird die Windgeschwindigkeit neben den beiden für die Berechnung

der Feuchttemperatur erforderlichen Parametern Lufttemperatur und Luftfeuchtig-

keit als wesentlicher Faktor in das in Kapitel 7 zu konzipierende DSS eingehen. 

Der einzige weitere noch im DSS berücksichtigte Witterungsfaktor – die Nieder-

schlagsmenge – wird an dieser Stelle nicht weiter betrachtet, da er sich nicht auf

die Beschneibarkeit an sich, sondern auf die Haltbarkeit der Schneedecke aus-

wirkt (siehe hierzu Erläuterungen zum quantitativen DSS-Modell in Kapitel 7.2).

Version 1.0 Seite 26 von 130 26.06.2019



Christian Reinboth infernum q795269

4. Ökologische Auswirkungen

4.1 Auswirkungen auf den Boden

4.1.1 Auswirkungen der maschinellen Pistenpräparation

Die Auswirkungen von künstlicher Beschneiung auf Zusammensetzung und öko-

logische Qualität des Bodens sind neben den direkten Effekten der Kunstschnee-

ausbringung primär auf die mit der Beschneiung einhergehende maschinelle Be-

arbeitung von Pisten zurückzuführen. Im Rahmen einer solchen Präparation wer-

den alle Unebenheiten sowie die natürliche Vegetation entfernt, um eine mög-

lichst ebene Fläche zu erzeugen (vgl. Gray 2017, S. 67). Aufgrund der dabei zum

Einsatz kommenden schweren Fahrzeuge (typisch sind etwa die in Abbildung 3

gezeigten Pistenraupen) geht dies nicht nur mit einer starken Komprimierung des

Schnees – beabsichtigt,  da dieser dadurch widerstandsfähiger wird – sondern

auch des Bodens einher. Die Schwere dieser Eingriffe geht weit über traditionelle

Formen der Anlage von Pisten hinaus, bei denen lediglich mit einem Verletzungs-

risiko behaftete Hindernisse wie große Steine oder Büsche entfernt wurden, wäh-

rend kleinere Unebenheiten unter der Naturschneedecke verschwanden.
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Der Hintergrund der maschinellen Pistenbearbeitung ist ökonomischer Natur, da

durch entsprechende Maßnahmen die für einen Betrieb – egal ob mit Natur- oder

Kunstschnee – zu erreichende Mindestschneehöhe reduziert werden kann. Burt

& Rice 2009 (S. 2251) gehen davon aus, dass auf naturbelassenen Pisten etwa

ein halber Meter mehr Schnee liegen muss, bevor diese sicher befahren werden

können. Präparierte Pisten können somit meist früher in der Saison eröffnet und

länger betrieben werden, was sie wiederum wirtschaftlich attraktiver macht.

Die bessere Verwertbarkeit wird jedoch mit einer Verringerung der ökologischen

Wertigkeit  des Bodens erkauft.  Durch die großflächige Bodenbearbeitung wird

die besonders nährstoffreiche obere Bodenschicht meist vollständig zerstört (vgl.

Burt & Rice 2009, S. 2243), was wiederum erhebliche Konsequenzen für Flora

und Fauna nach sich zieht (vgl. Schröder 2015, S. 100 f.; siehe auch Kapitel 4.3

und 4.4). Freppaz et al. 2013 (S. 60) empfehlen daher, vor jeder Neuanlage einer

Piste die natürliche Zusammensetzung des Bodens und der Vegetation möglichst

detailliert zu erfassen, um spätere Maßnahmen der Wiederbegrünung und des

Erosionsschutzes an diesem Ursprungszustand ausrichten zu können.

4.1.2 Auswirkungen der Kunstschneeausbringung

Da künstlicher Schnee eine andere Dichte und Zusammensetzung als natürlicher

Schnee aufweist, isoliert er den unter ihm befindlichen Boden stärker gegen kalte

Temperaturen, wodurch die Wahrscheinlichkeit für Bodenfrost sinkt (vgl.  Lintzen

2012, S. 12; Snajdr 2012, S. 4; Knaus 2011, S. 23) – einer der wenigen Effekte

von Kunstschnee, die ökologisch positiv gewertet werden könnten.

Da das zur Beschneiung verwendete Wasser aufgrund seiner Herkunft aus Ober-

flächengewässern (Flüsse, Speicherbecken) einen höheren Mineraliengehalt und

damit einen höheren pH-Wert als Regenwasser aufweist, wirkt sich das Eindrin-

gen abgetauten Kunstschnees in den Boden auf die dortigen mikrobiellen Aktivi-

täten aus, wodurch sich die Menge der für Pflanzen zur Verfügung stehenden or-

ganischen Verbindungen verringert  (vgl.  Gray 2017, S.  73-74).  Freppaz et  al.

2013 (S. 58) berichten, dass sich das Mikrobiom im Boden von Skipisten auch

fast 15 Jahre nach deren Konstruktion noch nicht wieder normalisiert hat. Wie

Knaus 2011 (S. 22) anmerkt, sind angesichts teils widersprüchlicher Erkenntnisse

(vgl. ebenda, S. 14) jedoch noch weitere Untersuchungen bezüglich der Auswir-

kungen künstlicher Beschneiung auf den pH-Wert des Bodens erforderlich.
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Die auf beschneiten Pisten im Schnitt um bis zu zwei Wochen später einsetzende

Schneeschmelze sowie die aufgrund der höheren Schneedichte und der stärke-

ren Versiegelung der komprimierten Böden dabei freigesetzte größere Wasser-

menge tragen zudem – ebenso wie die bereits angesprochene maschinelle Pis-

tenbearbeitung – zur Erosion des Bodens bei (vgl.  Freppaz et al. 2013, S. 52;

Snajdr 2012, S. 5; Burt & Rice 2009, S. 2250; de Jong et al. 2015, S. 7). Dieser

Effekt wird durch die Entfernung eines Großteils der den Boden stabilisierenden

Vegetation bei der Anlage neuer Pisten noch verstärkt (vgl. Freppaz et al. 2013,

S. 49 f.; Abegg 2011, S. 16; Gray 2017, S. 68; siehe auch Kapitel 4.3).

4.2 Auswirkungen auf den Wasserhaushalt

4.2.1 Wasserverbrauch künstlicher Beschneiung

Der Wasserverbrauch von künstlicher Beschneiung wird in der Literatur überein-

stimmend als hoch beziffert, wobei die Angaben (für Grund- und Nachbeschnei-

ung) zwischen 4.000 m³ (vgl.  Triebswetter & Wackerbauer, S. 99) und 6.000 m³

(vgl. de Jong 2013, S. 37) pro beschneitem Hektar Pistenfläche schwanken. Der

Bedarf einer einzigen Schneekanone oder Schneelanze kann dabei bei bis zu 10

Litern Wasser in der Sekunde liegen (vgl.  Schneider 2014, S. 22). Allein im am

Lake Tahoe im US-Bundesstaat  Nevada gelegenen,  gleichnamigen Skiressort

werden pro Schneeproduktionstag 1,8 Millionen Liter Wasser verbraucht, im Li-

berty Mountain Ski Ressort im US-Bundesstaat Pennsylvania sind es gar 1,4 Mil-

lionen Liter Wasser pro Stunde (Angaben zitiert in Gray 2017, S. 79).

In vielen Wintersportregionen wird inzwischen ein Großteil des lokal verfügbaren

Wassers für die Beschneiung aufgewendet. So beziffert Lintzen 2012 (S. 12) den

Anteil der Beschneiung am Wasserverbrauch in Schweizer Wintersportort Davos

auf 21,5%, während  Abegg 2011 (S. 13) für Scuol im Schweizer Kanton Grau-

bünden einen Anteil von 36,2% angibt. In einigen Regionen der französischen Al-

pen macht der Wasserverbrauch der (lediglich in wenigen Wochen im Jahr betrie-

benen) Beschneiung bereits mehr als die Hälfte des jährlichen regionalen Ge-

samtwasserverbrauchs aus (vgl. Snajdr 2012, S. 10).

Aufgrund der  stetig  zunehmenden Beschneiung weist  auch der  Wasserbedarf

eine stark steigende Tendenz auf: Wurden in den Alpen 2005 rund 95 Millionen

Liter Wasser für die Beschneiung verbraucht, waren es 2011 bereits 190 Millio-
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nen Liter – eine Verdoppelung in gerade einmal sechs Jahren (vgl. de Jong et al.

2017, S. 219). Um den Verbrauch von auch landwirtschaftlich oder als Trinkwas-

ser nutzbarem Wasser für die Beschneiung zu senken, wurden in den USA erste

Versuche unternommen, geklärte Abwässer für die Produktion von Kunstschnee

zu nutzen (vgl.  Gray 2017, S. 81).  Da bei unzureichender Vorbehandlung des

Wassers negative Auswirkungen auf die Gesundheit von Urlauberinnen und Pis-

tenpersonal befürchtet werden (jedoch nicht belegt werden konnten), gilt dieser

Ansatz derzeit aber noch als umstritten (vgl. Duquette 2016, S. 144).

In Debatten um die ökologische Verträglichkeit künstlicher Beschneiung wird im-

mer wieder behauptet, dass sich die Produktion von Kunstschnee nicht auf die

aggregierte Wasserverfügbarkeit einer Region auswirke, da das den lokalen Ge-

wässern entnommene Wasser ja lediglich in Schnee umgewandelt  würde,  der

wiederum schmelze und damit als unkontaminiertes Wasser in die Umwelt ent-

weiche. Tatsächlich bildet die Kunstschnee-Produktion jedoch keinen geschlos-

senen Wasserzyklus – vielmehr gehen insbesondere aufgrund von Verwehungen

bei der Schneeproduktion sowie aufgrund von gradueller Verdunstung aus den

Speicherbecken, die meist deutlich stärker sonnenexponiert sind, als die sie spei-

senden und über beschattenden Uferbewuchs verfügenden Gewässer, zwischen

30% und 50% der pro Saison entnommenen Wassermenge für den regionalen

Wasserhaushalt verloren (vgl. de Jong et al. 2012, S. 11; Snajdr 2012, S. 12; de

Jong et al. 2017, S. 220). Darüber hinaus ändert der Umstand, dass ein Großteil

des  entnommenen  Wassers  nicht  im  Sinne  einer  industriellen  Nutzung  „ver-

braucht“ wird, nichts an dem temporär sehr hohen Wasserbedarf der Anlagen,

welcher  eine  erhebliche  Belastung  für  lokale  Gewässer  darstellen  kann  (vgl.

Abegg & Steiger 2016, S. 389 f.; siehe dazu auch Kapitel 4.2.2).

4.2.2 Auswirkungen auf Fließgewässer

Weniger als 10% des zur Beschneiung verwendeten Wassers stammen aus in

die Speicherbecken eingehendem Niederschlag, der Rest wird meist aus lokalen

Fließgewässern entnommen und – oft unter erheblichem technischem und ener-

getischem Aufwand – in die Becken gepumpt (vgl. Snajdr 2012, S. 11). Dies hat

„große Auswirkungen auf den Wasserkreislauf, nicht nur durch die Umverteilung

des Wassers, sondern auch durch die veränderten Hangwasserdrainagen [auf-

grund des unterirdischen Verlegens] der Leitungen“ (de Jong 2013, S. 36).
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Ein wesentliches Problem ist die Belastung von Fließgewässern durch die über-

mäßige Entnahme von Wasser (vgl.  de Jong 2013, S. 36;  Pinnow 2014, S. 32)

sowie durch sonstige, mit der Wasserentnahme verbundene bauliche Eingriffe18,

die etwa zum Verlust von Retentionsflächen oder zur Abnahme der Biodiversität

beitragen (vgl. Alverá et al. 2012, S. 165). Zwar darf eine Entnahme aus natürli-

chen Gewässern in den meisten Staaten nur dann stattfinden, wenn diese so viel

Wasser führen, dass der für den Fortbestand der dort lebenden Arten erforderli-

che Restwasserabfluss gewährleistet ist, was eine Entnahme während Phasen

der Trockenheit oder Verknappung ausschließt (vgl.  Götz et al. 2014, S. 32). In

der Praxis können jedoch die zur Beschneiung nötige Wassermenge sowie die

verfügbare Entnahmemenge aufgrund der Witterungsabhängigkeit oft nur unzu-

reichend genau geschätzt werden (vgl. Carmagnola et al. 2018, S. 503), weshalb

die zulässigen Entnahmemengen in vielen Regionen immer wieder (unter dem

großen Druck der Betreiber – siehe hierzu Kapitel 5.4) heraufgesetzt werden.

Während es durch die Beschneiung auf der einen Seite zur Entnahme von Was-

ser aus Fließgewässern kommt, kommt es während der Schmelzphase – auch

aufgrund der geringeren Aufnahmekapazität des maschinell bearbeiteten und da-

durch komprimierten Pistenbodens (vgl.  Freppaz et al. 2013, S. 50; siehe auch

Kapitel 4.1.1) – zu erhöhten Rückflüssen. Da das abfließende Schmelzwasser im

Vergleich zu Regenwasser mehr Nährstoffe und Mineralien wie Calcium und Ma-

gnesium mitführt (siehe hierzu auch Kapitel 4.1.2), und durch die erhöhte Erosion

zudem mehr  Bodenmaterial  eingetragen  wird,  wirkt  sich  die  Schneeschmelze

auch auf die Wasserzusammensetzung der das Schmelzwasser aufnehmenden

Wasserkörper aus und kann zu deren Eutrophierung beitragen (vgl. Snajdr 2012,

S. 6; Freppaz et al. 2013, S. 56). Um die durch den Wassereintrag verursachten

Probleme zu begrenzen und zugleich den Wasserbedarf der Beschneiung zu ver-

ringern, werden in einigen Skigebieten – wie etwa im Wachusett Ski Ressort im

US-Bundesstaat Massachusetts – Auffangbecken erprobt, aus denen Schmelz-

wasser in Speicherbecken zurückgepumpt werden kann (vgl. Gray 2017, S. 80).

Aufgrund ihrer Größe stellen solche Becken jedoch einen erheblichen zusätzli-

chen Eingriff in das Landschaftsbild dar (siehe hierzu auch Kapitel 4.5).

18 In den Alpen waren schon um das Jahr 2000 weniger als 13% der Fließgewässer 

noch unverbaut bzw. naturnah (vgl. de Jong 2013, S. 28).
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Wie Knaus 2011 (S. 25) anmerkt, lässt sich in manchen Regionen zudem nicht

mit Sicherheit feststellen, wo große Teile des Schmelzwassers überhaupt verblei-

ben. Dies impliziert, dass die Auswirkungen von Wasserentnahme, Beschneiung

und Schneeschmelze erheblich von der lokalen Geomorphologie abhängen und

daher regional stark unterschiedlich ausfallen können.

4.2.3 Auswirkungen auf Feuchtflächen

Mit den Auswirkungen künstlicher Beschneiung auf den Wasserhaushalt in enger

Verbindung stehend und bis dato kaum erforscht, ist der Effekt von Beschneiung

auf Moore und andere Feuchtgebiete. Bei Feuchtgebieten in Gebirgslagen han-

delt es sich nicht nur um besonders empfindliche Lebensräume mit komplexen

Ökosystemen, die von einem hohen Grad an Biodiversität geprägt sind, sondern

auch um hocheffiziente Kohlenstoffspeicher, die rund 60% des in europäischen

Böden gespeicherten Kohlenstoffs beherbergen (vgl.  de Jong 2013, S. 26;  Pin-

now 2014, S. 33). Auch wenn der genaue Wirkmechanismus noch unbekannt ist

(vgl. Knaus 2011, S. 5; Snajdr 2012, S. 9), konnte wiederholt festgestellt werden,

dass Feuchtgebiete im – auch weiteren – Umfeld künstlich beschneiter Pisten

und insbesondere von Speicherbecken an ökologischer Qualität (gemessen etwa

an Bodenfeuchte oder Nährstoff- und Humusgehalt im Boden, vgl. hierzu Knaus

2011, S. 7 ff.) verlieren oder sogar gänzlich veröden (vgl. de Jong et al. 2012, S.

15; de Jong et al. 2017, S. 221). Da sich Moorökosysteme bei einem „Über- oder

Unterschreiten  hydrologischer  Faktoren  […]  grundlegend  verändern“  können

(Pinnow 2014, S. 33) wird vermutet, dass der Eintrag von Schmelzwasser mit

atypischen Inhaltsstoffen in das fragile Ökosystem eine Kette an schwer vorher-

sagbaren Reaktionen auslöst,  die im Negativfall  zum dessen Zusammenbruch

führen. Um diesem Problem entgegenzuwirken, ist für die Beschneiung in der

Nähe mancher Feuchtgebiete ausschließlich Wasser zugelassen, das hinsichtlich

pH-Wert, Mineraliengehalt und anderer Eigenschaften exakt die Zusammenset-

zung von ortsüblichem Regenwasser aufweist (vgl. Knaus 2011, S. 5).

4.3 Auswirkungen auf die Flora

4.3.1 Auswirkungen der maschinellen Pistenpräparation

Wie schon bei der Betrachtung der Auswirkungen künstlicher Beschneiung auf

den Boden (siehe Kapitel 4.1), ist auch hinsichtlich der Auswirkungen auf die Flo-
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ra festzustellen, dass diese wesentlich auf die maschinelle Bearbeitung des Bo-

dens – insbesondere auf die weitgehende Zerstörung der oberen Bodenschicht

sowie auf die Entfernung als störend empfundener größerer Pflanzen wie Sträu-

chern oder Büschen – zurückzuführen sind. Durch das spätere häufige Befahren

der Pisten mit schweren Geräten – etwa im Rahmen der Verteilung von Schnee

durch Pistenraupen – wird die Schneedecke immer wieder komprimiert, was nicht

nur zu mechanischen Schäden an „überfahrenen“ Pflanzen führen kann, sondern

auch (bei mangelnder Luftdiffusion) deren Verrottung oder den Befall durch Pilze

begünstigt (vgl. Schmidt 2015, S. 36; Keßler et al. 2012, S. 282).

Laut Mayer & Erschbarmer 2009 (S. 152/153) wirkt sich die maschinelle Bearbei-

tung von Pisten vor allem auf verholzte (und damit strukturell stabilere) Pflanzen

sowie  auf  langsam  wachsende  Ökosysteme  negativ  aus,  während  grasartige

(und damit strukturell flexiblere) Pflanzen weniger stark betroffen sind. Allgemein

ist festzustellen, dass die Biodiversität zur Mitte von Skipisten hin deutlich ab-

nimmt, wobei sogenannte Schuttvegetation – Pflanzen, die an die Lebensbedin-

gungen auf Geröll angepasst sind – die Pistenflächen übernimmt und die dort ur-

sprünglich heimischen Arten ersetzt. 

4.3.2 Auswirkungen der Kunstschneeausbringung

Durch die höheren Nährstoffeinträge des Schmelzwassers von Kunstschnee (sie-

he hierzu auch Kapitel 4.2.2), sowie durch die erhöhte Wassermenge, ergibt sich

im Frühjahr auf den Pisten eine gewisse Düngewirkung, die in der Literatur unter-

schiedlich bewertet wird. Während Sippel 2017 (S. 44) darauf hinweist, dass die

zusätzlichen pflanzenverfügbaren Nährstoffe die Regeneration der aufgrund der

Präparation mechanisch dauerbelasteten Pistenböden unterstützen (und somit

die Verringerung des Nährstoffangebots aufgrund der Entfernung des Oberbo-

dens partiell ausgleichen, vgl. hierzu Mayer & Erschbarmer 2009, S. 140), weisen

andere Autoren darauf hin, dass sich dieser Düngeeffekt auf die Zusammenset-

zung der lokalen Flora auswirkt (vgl. Steiger 2010, S. 5; Rixen & Freppaz 2009,

S. 82). Begünstigt werden dadurch Generalisten mit höherem Wasser- und Nähr-

stoffbedarf, welche die teils hochspezialisierten Nischenarten verdrängen und da-

durch die Biodiversität reduzieren (vgl. Knaus 2011, S. 16 f.; Snajdr 2012, S. 5).
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Veränderungen in der Zusammensetzung der Flora werden auch durch die Ver-

kürzung der Vegetationsperiode hervorgerufen, die sich aus der künstlichen Ver-

längerung der  Wintersportsaison um mehrere Wochen (falls  witterungsbedingt

möglich nicht selten bis in die Osterferien hinein) ergibt (vgl. Steiger 2010, S. 5;

Snajdr 2012, S. 4; Beniston 2012; S. 349). „Dies führt dazu, dass in den alpinen

Gebieten Arten der Schneetälchengesellschaften19 und spät blühende Arten ge-

fördert werden, während früh blühende Arten Nachteile erleiden.“ (Knaus 2011,

S. 23) Änderungen in der Zusammensetzung der Flora wirken sich wiederum

kaskadierend auf die Zusammensetzung der Fauna aus, da es letztlich von den

verfügbaren Pflanzen abhängt,  welche Insektenarten sich dauerhaft  an einem

Standort halten können – und deren Verfügbarkeit als Nahrungsquelle sich wie-

derum auf Vögel und Amphibien auswirkt (vgl. Gray 2017, S. 69).

4.4 Auswirkungen auf die Fauna

Die Auswirkungen künstlicher Beschneiung auf die – in Mittel- und insbesondere

in Hochgebirgen hochgradig sensible und diverse20 – Tierwelt wurden bislang in

bedeutend geringerem Umfang untersucht, als deren Folgen für andere Bereiche

der belebten wie unbelebten Umwelt. Die wenigen vorliegenden Untersuchungen

beschränken sich meist auf einzelne Arten und Untersuchungsgebiete, was ge-

nerelle Aussagen erschwert (vgl. Keßler et al. 2012, S. 282).

Als gesichert gilt, dass der durch die Beschneiungsanlagen sowie durch die den

Schnee verteilenden Pistenraupen verursachte Lärm störend auf Säugetiere und

insbesondere Vögel wie etwa den Auerhahn (Tetrao urogallus) oder das Birkhuhn

(Lyrurus tetrix) wirkt (vgl. Schmidt 2015, S. 35; Snajdr 2012, S. 6). Wie erheblich

die Lärmauswirkungen von künstlicher Beschneiung sind, verdeutlicht eine von

Radmann 2012 (S. 17) in einem Skigebiet im US-Bundesstaat Colorado durchge-

führte Untersuchung. Diese ergab, dass gut ein Drittel der mit der Beschneiung

am Tag und alle der mit der Beschneiung bei Nacht befassten Angestellten regel-

mäßig dauerhaftem Lärm ausgesetzt waren, der über dem von der US-Arbeits-

schutzbehörde OSHA (Occupational Safety and Health Administration) empfohle-

19 Pflanzengesellschaften, die in schneereichen Höhenlagen verbreitet sind, und die 

sich durch eine kurze Vegetationsperiode von unter vier Monaten auszeichnen.

20 In den Alpen finden sich rund 20% aller in Europa vorkommenden

Pflanzenarten auf lediglich 3% der Landfläche (vgl. Lenz 2012, S. 39).
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nen 12-Stunden-Lärmgrenzwert von 82 dbA lag. Dies entspricht in etwa dem Ge-

räuschpegel eines Küchenmixers in unmittelbarer Nähe21. 

Viele nacht- wie tagaktive Tierarten werden durch eine auch nur zeitweilige, dafür

aber wiederkehrende Lärmbelastung dieses Ausmaßes dauerhaft vom Aufsuchen

betroffener Areale abgeschreckt, womit nicht nur ein Lebensraumverlust, sondern

auch  eine  Lebensraumfragmentierung  einhergeht,  da  Skipisten  zu  Schneisen

werden,  die  vormals  zusammenhängende Lebensräume zerteilen  (vgl.  Snajdr

2012, S. 6). Auch bei lärmarmen Systemen ist von (wenn auch geringen) Beein-

trächtigungen wildlebender Tiere auszugehen (vgl. de Jong et al. 2017, S. 221).

Ein mit der Lärmentwicklung vergleichbarer Effekt ist die Lichtverschmutzung, die

von beleuchteten Beschneiungsanlagen und Pistenfahrzeugen sowie von für das

abendliche Skifahren illuminierten Pisten ausgeht (siehe Abbildung 4). Unter dem

Begriff der Lichtverschmutzung oder auch des Lichtsmogs fasst man eine über-

mäßige und ineffiziente Beleuchtung sowie deren negative Auswirkungen auf Flo-

ra, Fauna und die Qualität astronomischer Beobachtungen zusammen. Da eine

detaillierte Betrachtung des Phänomens den Rahmen dieser Arbeit überschreiten

21 http://www.industrialnoisecontrol.com/comparative-noise-examples.htm
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würde, sei an dieser Stelle auf einige Arbeiten des Autors verwiesen, die sich mit

Lichtverschmutzung befassen (u.a.  Reinboth 2014;  Hänel & Reinboth 2012;  Fi-

scher-Hirchert  & Reinboth 2009;  Fischer-Hirchert  et  al.  2009).  Nächtliche Be-

leuchtung schreckt viele nachtaktive Säugetiere vom Betreten oder Befliegen be-

leuchteter Areale ab und trägt damit zu Fragmentierung und Verlust von Lebens-

räumen bei. Darüber hinaus wirkt Licht auf zahlreiche nachtaktive Insektenarten

anziehend, was dazu führt, dass Insekten durch Lampen regelrecht „eingefan-

gen“ werden und entweder in diesen verenden oder aber die ganze Nacht um sie

kreisen und dadurch von Nahrungssuche und Fortpflanzung abgehalten werden.

Analog zu den in Kapitel 4.3 betrachteten Auswirkungen auf die Flora gehen viele

Autorinnen und Autoren davon aus, dass die Präparation der Pisten sich stärker

auf wildlebende Tiere auswirkt, als deren spätere Beschneiung. Durch die Entfer-

nung von Vegetation und anderen Strukturelementen geht Lebensraum für Insek-

ten verloren (vgl.  Knaus 2011, S. 19 ff), wodurch sich aufgrund des sinkenden

Nahrungsangebots wiederum die Anzahl an Vögeln verringert (vgl. Gray 2017, S.

69). Sichere Erkenntnisse bezüglich einzelner Arten liegen u.a. für Heuschrecken

vor: Wie Keßler et al. 2012 (S. 290) belegen, nimmt sowohl deren Artendiversität

als auch deren Individuenzahl auf präparierten Pisten ab, wobei der Effekt sich

verstärkt, wenn diese Pisten künstlich beschneit werden. Ähnlich wie bei der Flo-

ra scheinen Pistenpräparation und Beschneiung auch bei den Insekten die Gene-

ralisten wie den Gemeinen Grashüpfer (Chorthippus parallelus) gegenüber den

Spezialisten wie der Alpinen Gebirgsschrecke (Miramella alpina) zu bevorzugen,

wodurch es zu einem Rückgang an Biodiversität kommt (ebd., S. 29 ff.).

4.5 Auswirkungen auf das Landschaftsbild

Der Bau von Beschneiungsanlagen ist wegen der für deren Betrieb erforderlichen

Infrastruktur zur Energie- und insbesondere zur Wasserversorgung mit erhebli-

chen Eingriffen in das natürliche Landschaftsbild verbunden (vgl. Sippel 2017, S.

44). Die sichtbarsten dieser Eingriffe stellen sicherlich die Speicherbecken (in An-

lehnung an natürliche Wasserkörper oft auch auch Speicherseen oder Speicher-

teiche bezeichnet, obwohl es sich in den seltensten Fällen um natürliche Gewäs-

ser handelt) dar, auf deren Befüllung bereits in Kapitel 4.2 eingegangen wurde.

Während in den 1970ern und 1980ern neben den Pisten insbesondere die Park-

plätze sowie die zugehörige Verkehrsinfrastruktur die auffälligsten Eingriffe in das
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Landschaftsbild eines Skigebiets darstellten, kamen mit der zunehmenden Ver-

breitung  der  künstlichen  Beschneiung  die  Speicherbecken  als  dominierendes

Element hinzu. Derartige Becken – die mit einem Volumen von bis zu 400.000 m³

bei Tiefen zwischen 20 m und 30 m erhebliche Flächen überspannen können

(vgl. Kellner & Weingartner 2018, S. 102; de Jong 2013, S. 36) – sowie die zu ih-

rer Befüllung und ihrem Betrieb erforderliche Infrastruktur, werden nicht selten mit

hohem technischen Aufwand in unzugänglichen und schwer bebaubaren Arealen

errichtet. Wie gravierend die damit verbundenen Landschaftseingriffe sind, zei-

gen beispielhaft die Darstellungen in  Kirsch et al. 2014 und  Eugen et al. 2010.

Während die künstlichen Wasserflächen in einigen Regionen während der Som-

mermonate erfolgreich als Wander-  und Ausflugsziele vermarktet  werden (vgl.

Mayer et al. 2011, S. 56), entstehen durch sie im Winter ganz neue Risiken: So

kann es etwa durch Lawineneinstöße in Speicherseen zu kostspieligen Schäden

an der Beschneiungsinfrastruktur kommen (vgl. Gabl et al. 2010 S. 26).

Neben den bereits benannten Elementen wirkt sich die Intensivierung des tech-

nisch gestützten Wintertourismus noch über zahlreiche weitere Effekte auf die

Landschaftswahrnehmung aus – von optisch irritierenden weißen Pistenstreifen

in ansonsten grünenden Umgebungen im Frühling über am Abend taghell  be-

leuchtete Abfahrten und die daraus resultierende Lichtverschmutzung bis hin zu

unansehnlichen, erkennbar erosionsgeschädigten und nur spärlich bewachsenen

Pisten während der Sommermonate. Da bislang kaum empirische Untersuchun-

gen zur Rezeption solcher Optiken durch Besucherinnen und Einheimische exis-

tieren, kann über deren Auswirkungen auf die menschliche Wahrnehmung des

Landschaftsbildes jedoch nur spekuliert werden (vgl. Mayer et al. 2011, S. 55).

4.6 Energieverbrauch künstlicher Beschneiung

Auch wenn sich der Energieverbrauch künstlicher Beschneiung nicht auf die un-

mittelbare Umwelt in Skigebieten auswirkt, kann sie im Rahmen einer ökologi-

schen Gesamtbewertung von Beschneiungsanlagen nicht ignoriert werden. Ener-

gie wird dabei primär für zwei Prozesse verbraucht: Für den Transport (und ggf.

die Kühlung22) von Wasser zu Beschneiungsanlagen und Speicherbecken sowie

für den Beschneiungsprozess an sich, d.h für die Erzeugung von Druckluft und

22 Für die Beschneiung zu verwendendes Wasser muss ab Temperaturen oberhalb von

etwa 3°C gekühlt werden (vgl. Schneider 2014, S. 73).
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den Betrieb von Ventilatoren und Kühlsystemen (vgl.  Lang & Lang 2009, S. 11;

zu Aufbau und Funktion von Beschneiungsanlagen siehe Kapitel 3.2).

Über den Energieverbrauch pro Hektar beschneiter Fläche finden sich in der Lite-

ratur unterschiedliche und aufgrund örtlicher Gegebenheiten teilweise stark von-

einander abweichende Angaben. Müller et al. 2013 (S. 4) tragen hierzu eine Viel-

zahl von Quellen aus den Jahren 2002 bis 2009 zusammen und gelangen im

Vergleich mit Erkenntnissen aus ihrem eigenen Forschungsprojekt KlimTourV zu

einem Durchschnittswert von 10.000 kWh/ha. Dies deckt sich mit aktuelleren An-

gaben in Mimm 2018 (S. 1), welcher von einem Energieverbrauch von 6.000 bis

10.000 kWh pro Schneekanone und Saison sowie von einem Verhältnis von 0,8

ha  beschneiter  Fläche  pro  Schneekanone  ausgeht,  wodurch  sich  ein  durch-

schnittlicher Energieverbrauch von 8.000 kWh auf 0,8 ha und damit ebenfalls von

10.000 kWh/ha ergibt. Rechnet man weitere Energieaufwendungen neben dem

reinen Beschneiungsverbrauch (so beispielsweise für Wassertransport und -küh-

lung) ein, ergibt sich pro Hektar beschneiter Fläche sogar ein saisonaler Energie-

verbrauch von durchschnittlich 13.000 kWh (vgl. de Jong et al. 2012, S. 12).

Auch wenn der Energieverbrauch eines modernen Skiressorts somit zweifelsfrei

hoch ist (so ist etwa das Skiressort Crested Butte im US-Bundesstaat Colorado

innerhalb weniger Betriebsmonate für mehr als die Hälfte des jährlichen Energie-

verbrauchs der 2000-Seelen-Gemeinde verantwortlich, vgl. hierzu Gray 2017, S.

73), weisen Lang & Lang 2009 zu Recht darauf hin, dass „das Einschneien eines

großen Skigebiets mit rund 550.000 kWh Strom in der Größenordnung des Be-

triebs einer offenen Kunsteisbahn […] (rund 800.000 kWh/a) oder eines Hallen-

bades in den Bergen (820.000 kWh/a) liegt“ (S. 3). Im Unterschied zu anderen

Großanlagen besteht beim Skiressort jedoch das Risiko, dass eine einzige länge-

re Wärmeperiode oder ein mehrtägiger Starkregen das Ergebnis des Energieein-

satzes vollständig zunichte machen, während die Vergleichsanlagen mit dem je-

weiligen Energieeinsatz das ganze Jahr hindurch – und nicht nur während einer

zeitlich eng begrenzten Saison – betrieben werden können.

Zur Optimierung der energetischen Bilanz von Skigebieten findet sich in der Lite-

ratur eine Reihe von Vorschlägen, darunter etwa die anteilige oder ausschließli-

che Nutzung regenerativ erzeugter Energie zur Beschneiung (vgl. Joemann et al.

2017), die Sekundärnutzung von Speicherbecken zur Stromerzeugung (vgl. Lanz
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et al. 2014, S. 16) oder die Integration von Maßnahmen zur Wärmerückgewin-

nung in den Beschneiungsprozess (vgl. Noguera 2018, S. 57;  Vagle 2016).

4.7 Beurteilung der ökologischen Auswirkungen

Die ökologischen Folgen künstlicher Beschneiung sind als erheblich zu betrach-

ten. Während sich bei den Auswirkungen auf die Flora neben negativen Wirkun-

gen auch Effekte zeigen, die positiv interpretiert werden können, sind die Auswir-

kungen auf den Boden sowie auf die Fauna ausschließlich negativ und kaum

kompensierbar.  Auch mit  Blick auf  die  Gewässerqualität  sowie auf  das Land-

schaftsbild zeigen sich ausschließlich negative Effekte, die jedoch – sofern prakti-

ziert – durch einen schonenden Umgang mit Wasserressourcen sowie durch eine

angepasste Bauweise zumindest abgemildert werden können. Da die für die Be-

schneiung  erforderliche  Energie  grundsätzlich  auch  klimaneutral  und  umwelt-

schonend generiert und zur Verfügung gestellt werden kann, hängt die ökologi-

sche Bilanz eines Skigebiets in dieser Hinsicht vom gewählten Energiemix ab. 

Auch wenn einige Autorinnen und Autoren (wie etwa Abegg 2012, S. 33) vor ei-

ner emotionalen Überhöhung der Umweltfolgen künstlicher Beschneiung warnen,

bleibt festzuhalten, dass der überwiegende Anteil  der gesichteten Literatur ein

insgesamt negatives Bild von den ökologischen Auswirkungen technisch gestütz-

ter  Wintersportangebote zeichnet.  Hinzu kommt,  dass eine ausgeprägte Infra-

struktur für künstliche Beschneiung meist mit einem hohen Besucheraufkommen

einhergeht, welches wiederum mit weiteren Belastungen für die Umwelt verbun-

den ist. Hierzu gehört insbesondere der touristische An- und Abreiseverkehr (vgl.

Abegg 2011, S. 4),  der aufgrund der relativen Zunahme von Flugreisen sowie

dem gleichzeitigen Bedeutungsverlust von Bahnfahrten in die Alpen als größter

Treiber der durch den Wintersporttourismus verursachten CO2-Emissionen zu be-

trachten ist (vgl. Behnen 2011, S. 289 ff). Zusammenfassend ist somit festzuhal-

ten, dass technisch gestützte Wintersportangebote – wie jede Form des tech-

nisch gestützten Intensivtourismus – die natürliche Umwelt erheblich belasten.
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5. Wirtschaftliche Tragfähigkeit

5.1 Ökonomische Bedeutung des Wintersports

Die ökonomische Bedeutung des Wintersports für manche Regionen manifestiert

sich in wenigen Ländern so deutlich wie in Österreich, wo etwa 2,5% aller Voll-

zeitarbeitsplätze vom Wintersporttourismus abhängig sind (vgl. Grussmann et al.

2014, S. 44), der wiederum 68% (vgl.  Grussmann et al. 2014, S. 43) bis 78%

(vgl.  Schneider 2014, S. 5) des Wintertourismus ausmacht (s.a. Hammerl 2010,

S. 30). Der Wintertourismus ist damit für über ein Drittel des Beschäftigungsef-

fekts der österreichischen Tourismuswirtschaft verantwortlich (vgl. Pröbstl-Haider

& Pütz 2016, S. 16). In einigen österreichischen Gemeinden macht der (gesamte)

Tourismus mehr als 80% der gesamten dortigen Wertschöpfung aus. 

In Deutschland – das nicht zu den wichtigsten europäischen Wintersportländern

gehört23 – spielt der Wintersporttourismus eine weniger wichtige, aber dennoch

nicht  vernachlässigbare Rolle:  Laut  Demiroglu 2016 (S.  17) spielen sich etwa

12,5% der weltweiten wintersporttouristischen Wertschöpfung in Deutschland ab.

Dabei zeigt sich, dass auch in den Mittelgebirgen die ökonomische Abhängigkeit

vom Wintersport beträchtlich sein kann – so verzeichnete man beispielsweise in

Wintersportort Winterberg in Nordrhein-Westfalen im Jahr 2012 rund 1,2 Millio-

nen Übernachtungen und 1,9 Millionen Tagesgäste, von denen 480 Betriebe und

mehr als 3.700 Arbeitsplätze abhängig waren (vgl. Usinger 2015, S. 13).

5.2 Ansprüche an künstliche Beschneiung

Wie Dinter et al. 2016 (S. 5) und Landtwing & Götz 2016 (S. 593) anmerken, ha-

ben die Ansprüche von Urlauberinnen an Infrastruktur und Angebote von Winter-

sportdestinationen während der vergangenen zwei Jahrzehnte beständig zuge-

nommen.  Von herausragender  Bedeutung für  die  wirtschaftliche  Existenz von

Skigebieten ist dabei die Fähigkeit der Anbieter, Schneesicherheit zu garantieren:

Da viele Touristinnen auf den Klimawandel mit einer erhöhten Flexibilität bei der

Destinationswahl  reagieren,  „damit  das  bisherige  Aktivitätsmuster  beibehalten

[werden kann]“ (Bischof et al. 2017, S. 225), können „relativ geringe Änderungen

23 Neben Österreich sind dies Frankreich, Italien und die Schweiz, die zusammen 83%

der europäischen Pistenflächen auf sich vereinen (vgl. Damm et al. 2017, S. 39).
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der klimatischen Rahmenbedingungen […] bereits massive Verluste in der Touris-

musbranche zur Folge haben“ (Endler 2010, S. 15). Ein statistisch signifikanter

Zusammenhang zwischen Witterung und Belegungszahlen von Wintersportdesti-

nationen wird etwa von Falk & Vanat 2016 (S. 345) und Gonseth & Matasci 2011

(S. 265) nachgewiesen.

Wie eine im Jahr 2012 von Osberghaus et al. 2013 (S. 50 ff.) durchgeführte re-

präsentative Erhebung unter deutschen Winterurlauberinnen zeigt, haben zwar

erst 3% der Befragten eine Reise wegen Schneemangels am Zielort nicht ange-

treten, beinahe 23% würden aber ihr Reiseziel ändern, wenn es dort mehrfach zu

Saisonausfällen  käme.  Rund  6%  der  Befragten  schlossen  bereits  2012  eine

Schneesicherheitsversicherung ab, welche die kostenlose Stornierung einer ge-

buchten  Reise bei  ungünstigen  Witterungsbedingungen vor  Ort  ermöglichte  –

und weitere 7% planten, derartige Versicherungen zukünftig abzuschließen. Eine

Erhebung unter 2.400 Wintersportlerinnen in Deutschland, Italien und Österreich

durch Demiroglu et al. 2015 (S. 55) ergab, dass über ein Drittel der Befragten ei-

nen Urlaub bei schlechten Witterungsbedingungen abbrechen oder absagen wür-

den. Die hohen Erwartungen an die Schneesicherheit von Destinationen hat dazu

geführt, dass selbst in extremen Höhenlagen oberhalb von 3.000 m ü.NN mittler-

weile Beschneiungsinfrastruktur vorgehalten wird (vgl. Gray 2017, S. 72), um po-

tentiellen Gästen gegenüber Schneesicherheit signalisieren zu können.

Wie aber ist die für die Vermarktung von Skigebieten so wichtige Eigenschaft der

Schneesicherheit definiert? In der gesichteten Literatur finden sich mit der  100-

Tage-Regel und dem Weihnachtsindikator  zwei häufig gemeinsam verwendete

Definitionen, die nachfolgend kurz betrachtet werden sollen.

Die auf eine Veröffentlichung von Bruno Abegg aus dem Jahr 1996 zurückgehen-

de 100-Tage-Regel besagt, dass ein Wintersportgebiet als schneesicher gelten

kann, wenn in mindestens 7 von 10 Wintersaisons an mindestens 100 Tagen

eine ausreichende Schneehöhe für den Wintersportbetrieb verfügbar ist, wobei

die erforderliche Schneehöhe meist mit 30 cm angegeben wird. Diese Regel wird

etwa in Dawson & Scott 2013 (S. 245), Müller et al. 2013 (S. 3), Steiger 2010 (S.

3) und Abegg 2012 (S. 29) referenziert. In einigen Quellen finden sich Adaptionen

dieser Regel:  So legen etwa  Endler 2010 (S. 9 f.),  Matzarakis et al. 2012 (S.

646), Becken 2010 (S. 12), Amelung & Moreno 2009 (S. 10) und Sippel 2017 (S.
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43)  die  Wintersportsaison  auf  den  Zeitraum  zwischen  dem  01.12.  und  dem

15.04., während sie bei Usinger 2015 (S. 9) am 16.12. startet. Während Müller et

al. 2013 zur Erfüllung der 100-Tage-Regel einen Betrieb nicht im gesamten Ski-

gebiet, sondern lediglich „auf der mittleren Höhe des Skigebiets“ (S. 1) verlangt,

ist die Regel für Steiger 2011 (S. 687) erfüllt, wenn ein Betrieb auf mindestens

50% der Pistenfläche möglich ist.

Kritik an der Allgemeingültigkeit der 100-Tage-Regel findet sich etwa bei Schnei-

der 2014 (S. 7), der darauf hinweist, dass sie – da die 100 Tage sich beliebig in-

nerhalb der Saison verteilen können – nicht zwischen der wirtschaftlichen Bedeu-

tung von Haupt- und Nebensaison unterscheidet. Ergänzend stellen  Bark et al.

2010 (S.  469) fest,  dass das Hauptgeschäft  in Wintersportgebieten außerhalb

Europas nicht während der „klassischen“ Wintersportsaison stattfindet24 und die

100 Tage-Regel daher regional anzupassen ist.  Demiroglu et al. 2015 (S. 103)

bemängeln, dass eine empirische Überprüfung des Zusammenhangs zwischen

der „Faustregel“ und der Wirtschaftlichkeit eines Skigebiets bis heute fehlt – und

belegen am Beispiel zweier Skigebiete in der Türkei, dass eine Wirtschaftlichkeit

auch bei Unterschreitung der Regel gegeben sein kann. Auch Usinger 2015 (S.

9) geht davon aus, dass für die Schneesicherheit und die Wirtschaftlichkeit klei-

nerer Skigebiete in Mittelgebirgen eigentlich eine 60-Tage-Regel oder eine 80-Ta-

ge-Regel gelten müsste. Selbst Abegg 2012 weist als Schöpfer der 100-Tage-Re-

gel darauf hin, dass ihre Einhaltung „bei weitem nicht der einzige Faktor [ist], der

über Erfolg oder Nichterfolg eines Skigebiets entscheidet“ (S. 29).

In einigen Publikationen wird die 100-Tage-Regel durch den Weihnachtsindikator

ergänzt. Nach diesem gilt ein Skigebiet als schneesicher, wenn die betriebserfor-

derliche Mindestschneehöhe während der ökonomisch wichtigen Weihnachtssai-

son zwischen dem 22.12. und dem 04.01.25 durchgehend gegeben ist (vgl. Abegg

& Steiger 2016, S. 395; Steiger 2011, S. 687; Müller et al. 2013, S. 3).

24 In den USA sind beispielsweise die in Europa eher unbedeutenden Erntedanktage 

(Thanksgiving) von wesentlicher wirtschaftlicher Bedeutung für Wintersportgebiete.

25 Viele europäische Skigebiete generieren in diesen 13 Tagen 20%-30% ihres 

gesamten Jahresumsatzes.
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5.3 Kosten künstlicher Beschneiung

Bei der Betrachtung der Kosten künstlicher Beschneiung ist zwischen den Kosten

für Infrastrukturerrichtung und -modernisierung sowie den Kosten für Instandhal-

tung und laufenden Betrieb zu unterscheiden. Da die Investitionskosten erheblich

von Topologie und Topographie des Planungsgebiets abhängig sind, finden sich

in der Literatur zwar beispielhafte Angaben zur Höhe einzelner Investitionen26, all-

gemeingültige Aussagen werden aber nur zur Amortisationsdauer getroffen. Die-

se liegt (bei wirtschaftlich arbeitenden Skigebieten, siehe hierzu Kapitel 5.2) für

Schneekanonen bei etwa 12 Jahren, für Leitungen bei 20 bis 30 Jahren sowie für

Speicherseen bei 30 bis 45 Jahren (vgl. Schneider 2014, S. 55) bzw. bei durch-

schnittlich 15 bis 20 Jahren für jeden investierten Euro (vgl. Snajdr 2012, S. 13).

Detailliertere Angaben finden sich dagegen zu den Betriebskosten von Beschnei-

ungsanlagen, die durch die Energiekosten dominiert werden. Bei Tölzer & Schaff-

ler 2017 (S. 30),  Triebswetter & Wackerbauer (S. 100),  Landtwing & Götz 2016

(S. 595) und Bark et al. 2010 (S. 482) finden sich für die Betriebskosten überein-

stimmende Schätzwerte zwischen 3 Euro und 6 Euro pro Kubikmeter produzier-

tem Schnee. Pro Kilometer beschneiter Skipiste ergeben sich damit Kosten zwi-

schen 33.000 Euro und 50.000 Euro (vgl. Bräuer et al. 2009, S. 70; Triebswetter

& Wackerbauer, S. 100). Eine davon abweichende Einschätzung findet sich bei

Lang & Lang 2009 (S. 5), welche die Betriebskosten pro Pistenkilometer – auffal-

lend breit – bei 18.000 Euro bis 88.000 Euro veranschlagen. Hinzu kommen die

Kosten für die Pistenpräparation, wobei Pistenfahrzeuge rund 45.000 Euro in der

Anschaffung kosten, bis zu 30 Liter Diesel pro Stunde verbrauchen und durch-

schnittlich rund 1.200 Betriebsstunden je Saison im Einsatz sind (vgl. Landtwing

& Götz 2016, S. 594). Nicht einfaktorisiert sind bei allen aufgeführten Schätzwer-

ten die Kosten für das erforderliche Personal, da diese von Region zu Region zu

stark divergieren, um allgemeingültige Aussagen ableiten zu können.

26 So wurden beispielsweise in Frankreich zwischen 1993 und 2014 1,4 Milliarden Euro

und damit rund 66 Millionen Euro im Jahresdurchschnitt in neue Beschneiungstechnik

investiert (vgl.  Demiroglu et al. 2015, S. 124), in Österreich waren es im Jahr 2010

rund 153 Millionen Euro (vgl. Schneider 2014, S. 5).
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5.4 Wirtschaftlichkeit für Betreiber

Die Frage, ob technische Beschneiung für die Betreiber von Skipisten – in der

Regel auch die Betreiber der zuführenden Seil- bzw. Bergbahnen – wirtschaftlich

sein kann, wird in der gesichteten Literatur überwiegend bejaht. Laut Bieger et al.

2019 (S. 19) ist davon auszugehen, dass rund 22% der in größeren und fast 50%

der in kleineren Skigebieten generierten Einnahmen der Beschneiung zu verdan-

ken sind. Eine Risikoanalyse von Falk 2013 (S. 386) belegt, dass sich die frühzei-

tige (nicht jedoch die spätere) Einführung von Beschneiung positiv auf die lang-

fristige wirtschaftliche Performanz von Skigebieten ausgewirkt  hat  – und dass

Gebiete, die auf technische Beschneiung verzichten, einem höheren Insolvenzri-

siko ausgesetzt sind.  Falk & Vanat 2016 konnten zudem anhand einer Analyse

von Daten aus 109 französischen Skigebieten nachweisen, dass die „kumulierten

Investitionen in Beschneiungstechnik einen signifikanten und positiven Einfluss

auf die Anzahl an Pistennutzern haben“ (S. 49), wobei der Zusammenhang nur

für Skigebiete oberhalb von 1.800 m ü.NN generalisiert werden kann, während

positive Effekte in niedrig gelegenen Gebieten nur in Jahren mit besonders wenig

Naturschnee eintreten. Wie Damm et al. 2017 (S. 40) feststellen, hat künstliche

Beschneiung den Umsatz vieler Skigebiete bereits weitgehend vom natürlichen

Schneefall  entkoppelt.  Tatsächlich ist   Beschneiung aus Sicht  vieler  Betreiber

weit mehr als nur ein Ansatz zur Überbrückung ungünstiger Witterungsperioden,

gestattet sie doch eine Verstetigung des Skibetriebs mit zusicherbaren Schnee-

höhen (vgl. Bark et al. 2010, S. 469).

Während die Wirtschaftlichkeit von Beschneiungstechnik für hochgelegene und

größere Skigebiete in den meisten der gesichteten Quellen nicht bezweifelt wird,

wird doch – insbesondere in jüngeren Publikationen – auf eine Reihe von Proble-

men hingewiesen, welche die perspektivische Wirtschaftlichkeit von Beschneiung

in Frage stellen. Aufgrund der steigenden Energiepreise, der sich verschlechtern-

den klimatischen Bedingungen sowie der sich – in einigen Regionen – verknap-

penden Wasserressourcen, wird die Beschneiung in vielen Gebieten immer ener-

gieintensiver und damit kostspieliger werden (vgl. Damm et al. 2014, S. 9). Dabei

geht  Abegg 2011 (S. 14) davon aus, dass der erhöhte Energiebedarf durch die

klimatische Entwicklung alle zu erwartenden Effizienzgewinne durch die weitere

technische Optimierung von Beschneiungsanlagen deutlich übertreffen wird. 
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Dies wird – vorbehaltlich einer stärkeren Subventionierung (siehe hierzu auch

Kapitel 5.5) – zu erheblichen Steigerungen bei den Preisen für Lift- und Skikarten

führen (vgl.  Schneider 2014, S. 4; Damm et al. 2014, S. 8). Da die Entwicklung

der Liftpreise in einigen Ländern – wie etwa Schweden (vgl.  Demiroglu et  al.

2015, S. 47) – bereits heute deutlich über der Inflationsrate liegt, gehen Autoren

wie Laesser et al. 2010 davon aus, dass für weitere Erhöhungen „ohne zusätzli-

che Leistungen oder eine Beeinflussung der Wahrnehmung [der Preiserhöhun-

gen durch die jeweilige Zielgruppe] nur ein geringer Spielraum“ besteht (S. 17).

Diese Entwicklung stellt  die Zukunft  des Wintersporttourismus als Wachstums-

markt in Frage (vgl.  Demiroglu et al. 2015, S. 47) und könnte mittelfristig dazu

führen, dass dieser anstatt eines durch breite Massen wahrgenommenen Frei-

zeitvergnügens wieder zum Betätigungsfeld einer finanziell gutsituierten Klientel

wird, wie dies noch bis in die 1960er der Fall gewesen ist (siehe auch Kapitel

3.1). Wie Lütlof & Lengweiler 2015 (S. 11) ausführen, sind die Winterumsätze der

Bergbahnen in der Schweiz bereits heute rückläufig: So erwirtschaftete zur Win-

tersaison 2013/2014 nur noch die Hälfte der Betreiber im Fünfjahresdurchschnitt

einen Gewinn, während dies 2011/2012 erst bei knapp einem Drittel der Fall war.

Da die Kosten der Beschneiung insbesondere in schneeärmeren Lagen anstei-

gen werden, ist davon auszugehen, dass vor allem tieferliegende (vgl. Bark et al.

2010, S. 468; Dawson et al. 2009, S. 2; Falk & Vanat 2016, S. 345) und kleinere

und damit weniger investitionsstarke (vgl.  Schneider 2014, S. 72;  Müller et al.

2013, S. 8) Skigebiete von dieser Entwicklung betroffen sein werden. Falk & Va-

nat 2016 (S. 345) führen den Nachweis, dass sich Investitionen in Beschneiungs-

technik in niedrig gelegenen Skigebieten schon heute nicht mehr rentieren, da sie

sich nicht mehr signifikant auf die zu erwartenden Nutzerzahlen auswirken.

5.5 Wirtschaftlichkeit für Kommunen

Neben der betriebswirtschaftlichen Rendite von künstlicher Beschneiung für den

Pisten- oder Seilbahnbetreiber ist  im Rahmen einer Wirtschaftlichkeitsbetrach-

tung auch die regionalwirtschaftliche Rendite für die Kommune oder den Land-

kreis zu berücksichtigen (vgl. Bieger et al. 2019, S. 2). Obwohl laut Bernhart et al.

2017 „vielfach vermutet [wird], dass der Wirtschaftsmotor ‚Tourismus‘ zu steigen-

den Einnahmen in den Gemeindehaushalten führt und dafür sorgt, dass die fi-

nanzielle Lage der Gemeinden mit höherer Tourismusintensität zunimmt, [gilt es]
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allerdings auch zu untersuchen, inwieweit der Tourismus höhere Gemeindeaus-

gaben erforderlich macht, die wiederum die finanzielle Performance negativ be-

einflussen können.“ (S. 9) Tatsächlich ist die öffentliche Hand nicht selten direkt

oder indirekt an der finanziellen Aufrechterhaltung von Wintersportangeboten be-

teiligt (vgl.  Bieger et al. 2019, S. 26), so etwa durch Subventionierung der Ent-

nahme von Wasser aus lokalen Gewässern (vgl. de Jong 2013, S. 39) oder aber

durch immer wieder neu ausgehandelte allgemeine Betriebskostenzuschüsse.

Der kritische Blick in die Literatur verdeutlicht, dass Kommunen ein erhebliches

finanzielles Zukunftsrisiko eingehen, wenn sie die Entwicklung eines Wintersport-

gebiets in ihrem Einflussbereich zulassen oder fördern. Zwar zeigt eine von Bern-

hart et al. 2017 durchgeführte Untersuchung des Zusammenhangs zwischen tou-

ristischer Intensität und öffentlichen Haushalten in 395 österreichischen Kommu-

nen, dass ein florierender Fremdenverkehr zu einer positiven Haushaltsentwick-

lung  beiträgt  und  „tourismusintensive  Gemeinden  über  einen  höheren  Wirt-

schaftsüberschuss und über eine höhere öffentliche Sparquote verfügen“ (S. 76).

Gerät aber ein Betreiber in eine wirtschaftliche Schieflage, kann er aufgrund der

mit einem Skigebiet direkt und indirekt verbundenen Arbeitsplätze (siehe hierzu

auch Kapitel 5.1) erheblichen Druck auf eine Kommune ausüben, um zusätzliche

Subventionen oder Betriebskostenzuschüsse zu erhalten.

Wie Schröder 2015 feststellt, sind die Pistenbetriebe „innerhalb [des] Netzwerks

[aus regionalen touristischen Unternehmen]  häufig  jener  Knotenpunkt,  der  am

stärksten auf die Reiseentscheidung Einfluss nimmt. Diese Gegebenheit ruft […]

ein bestimmtes lokales und regionales Kräfteverhältnis hervor.“ (S. 98)  Die sich

daraus ergebende regionale Vormachtstellung trägt dazu bei, dass Pistenbetrei-

ber nicht selten einen unverhältnismäßig großen Einfluss auf die öffentliche Mei-

nung sowie auf politische Willensbildungsprozesse ausüben (vgl. Schröder 2017,

S. 467). Ein 2013 entstandenes Positionspapier der Bergbahnen in Graubünden

zum Umgang mit dem Klimawandel (Gschwend 2013) macht deutlich, dass sei-

tens solcher Akteure teils sehr konkrete Forderungen zur öffentlichen Förderung

von Beschneiung sowie zur Lockerung von Umweltauflagen erhoben werden.

Wie Abegg 2011 anmerkt, existieren „zahlreiche Beispiele für die finanzielle Un-

terstützung von notleidenden Seilbahnunternehmen“ (S. 18), die das erhebliche

Potential der Branche unterstreichen, mit  der Androhung einer Betriebseinstel-
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lung und den daraus resultierenden regionalwirtschaftlichen Verwerfungen immer

wieder neue öffentliche Mittel zu requirieren. Abegg bemängelt, dass die von den

Betreibern  vorgebrachte  Prämisse  einer  ökonomischen  Unverzichtbarkeit  im

Rahmen der politischen Entscheidungsfindungsprozesse meist nicht kritisch hin-

terfragt oder empirisch überprüft  wird. „Kommunen, die den Bau künstlich be-

schneiter Skianlagen genehmigen bzw. fördern, gehen damit das Risiko ein, […]

finanziell in die Pflicht genommen zu werden oder aber vor einer Investitionsruine

zu stehen.“ (de Jong et al. 2017, S. 221)

5.6 Akzeptanz künstlicher Beschneiung

Als Anpassungsstrategie an den Klimawandel ist die Beschneiung in den vergan-

genen zehn Jahren deutlich stärker in die mediale und öffentliche Kritik geraten.

Wurde Beschneiung bis in das erste Jahrzehnt des neuen Jahrtausends primär

von Landschaftsästheten und Umweltverbänden wegen der enormen baulichen

Eingriffe sowie der Wirkung auf Flora und Fauna abgelehnt, stellt sich auch Ski-

enthusiasten zunehmend die Frage, ob eine Klimaanpassungsstrategie mit  ei-

nem hohen Energieverbrauch und ökologischen Schäden einhergehen sollte –

mithin ja genau den Faktoren, die den anthropogenen Klimawandel vorantreiben.

Da der langfristige Erfolg dieser Strategie zudem zeitlich wie örtlich begrenzt ist –

nicht  alle  Skigebiete  werden  angesichts  der  klimatischen  Veränderungen  auf

Dauer beschneien können (vgl. Bark et al. 2010, S. 469) – wird die Sinnhaftigkeit

von Beschneiung vor dem Hintergrund der öffentlichen Debatten um den Klima-

wandel zunehmend in Frage gestellt (vgl. Schröder 2017, S. 472). Dies wird auch

in der Industrie als Bedrohung wahrgenommen: „Viele Eltern leiden heute unter

Gewissensbissen. Sollen sie ihren Kindern noch das Pistenskifahren beibringen?

Ist es vertretbar, sich einzureihen in die Autostaus Richtung Skiorte und in die

endlosen Liftschlangen? […] Alternativen sind gefragt.“ (Bertle 2009, S. 20)

Wie  eine  im  Auftrag  der  ZEIT durch  das  Meinungsforschungsinstitut  YouGov

durchgeführte bevölkerungsrepräsentative  Umfrage ergab,  waren bereits  2014

rund 56% der erwachsenen Deutschen der Meinung, dass fehlender natürlicher

Schnee nicht durch die Produktion von Kunstschnee ausgeglichen werden sollte

(siehe Abbildung 5). In der gleichen Erhebung gaben 78% der Befragten an, dass
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den Interessen der touristischen Industrie in Wintersportgebieten kein Vorrang

vor den Belangen des Umwelt- und Naturschutzes eingeräumt werden sollte27.

Wie problematisch für die Wintersportindustrie diese zunehmende Ablehnung be-

reits geworden ist, zeigt unter anderem der erhebliche Widerstand gegen die bei-

den Bewerbungsversuche der Stadt München um die Olympischen Winterspiele

der Jahre 2018 und 2022, wobei sich die Kritik – neben den Kosten für die öffent-

liche Hand – wesentlich gegen die Beschneiung und deren Umweltfolgen richtete

(vgl.  Hamberger et al. 2013, S. 10). Sowohl die Bewerbung Münchens als auch

die Bewerbung des Kantons Graubünden auf die Winterolympiade 2022 scheiter-

ten letztendlich an Volksbegehren (vgl. Müller et al. 2013; Hierneis et al. 2011).

Für Wintersportinvestoren ist die schwindende Akzeptanz mit erheblichen Risiken

verbunden: Widersprüche und Klagen durch Anwohnerinnen und Umweltverbän-

de können Planungen und Bauvorhaben um Jahre verzögern und – auch ange-

27 Datenquelle: Statista
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sichts der konjunkturellen Entwicklung im Bausektor – erheblich verteuern oder

sogar gänzlich scheitern lassen. Darüber hinaus kann auch lokaler politischer Wi-

derstand zu Verzögerungen oder höheren Bewilligungsauflagen führen.

5.7 Beurteilung der wirtschaftlichen Tragfähigkeit

Zunehmende touristische Ansprüche, höhere Energiepreise, sich verschlechtern-

de klimatische Rahmenbedingungen, wachsender Konkurrenzdruck (vgl. Laesser

et al. 2010, S. 23) und ein aus einer Vielzahl von Gründen (darunter steigende

Preise, demografischer Wandel und zunehmendes Umweltbewusstsein) abneh-

mendes Interesse am Wintersport (vgl. Demiroglu et al. 2015, S. 47), setzen Pis-

tenbetreiber unter Druck und stellen – wie in den vorigen Abschnitten dargestellt

–  die  Wirtschaftlichkeit  technischer  Beschneiung sowohl  mit  Blick  auf  die  be-

triebswirtschaftliche sowie auf die regionalökonomische Rendite in Frage.

Obwohl Beschneiung – gerade in höhergelegenen Gegenden – noch auf Jahr-

zehnte hinaus technisch möglich sein wird, hat die aufgezeigte Entwicklung be-

reits zu wirtschaftlichen Problemen in zahlreichen Skigebieten geführt. Wie Laes-

ser et al. 2010 berichten, „leidet die Bergbahnbranche in besonderem Maße un-

ter  einer  Ertragsschwäche“  (S.  6),  die  insbesondere durch  die  abnehmenden

Grenzerlöse von Investitionen in neue Beschneiungstechnik verursacht wird – die

aufgrund des erwähnten Erwartungs- und Konkurrenzdrucks dennoch beständig

zunehmen (vgl. Benoit 2012, S. 23). Wie Walser 2013 (S. 60) anmerkt, arbeitete

schon 2013 ein Drittel der österreichischen Seilbahnen nicht mehr rentabel – und

laut einer in Bogataj 2011 (S. 19) zitierten Studie der Uni Zürich erwogen bereits

2007 gut 15% der schweizerischen Seilbahnen die Geschäftsaufgabe. Im Jahr

2018 konstatierten Falk  & Steiger  2018 (S.  10)  für  23% der  österreichischen

Steilbahnunternehmen eine negative Eigenkapitallage, d.h. einen unter dem Wert

der aufgenommenen Kredite und Hypotheken liegenden Unternehmenswert.

Eine besondere Vulnerabilität ergibt sich durch den Umstand, dass einzelne Sai-

sonausfälle sich erheblich auf die wirtschaftliche Überlebensfähigkeit von Skige-

bieten auswirken können, da die Umsatzausfälle erforderliche Infrastrukturinvesti-

tionen verzögern (vgl. Becken 2010, S. 6). Während die meisten Marktteilnehmer

unwirtschaftliche Einzelsaisons noch überstehen können (Dawson & Scott 2013,

S.  245),  können zwei  oder mehr schlechte Saisons in  Folge bereits das wirt-

schaftliche Aus eines Skigebiets bedeuten (vgl.  Dawson et al. 2009, S. 3). Die
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Branche reagiert  auf  diese Bedrohung mit  zunehmend exotischeren Maßnah-

men, zu denen unter anderem der Abschluss von Wetterderivaten gehört – deri-

vativen Finanzinstrumenten, die zwischen einem touristischen Betrieb und einer

Versicherung gehandelt  werden und durch die  sich  Witterungsrisiken auf  den

Versicherungspartner übertragen lassen (detailliert dargestellt in Dordevic 2018).

Immer wieder diskutiert wird auch eine direkte Beteiligung der von den Winter-

gästen profitierenden regionalen Betriebe der Hotellerie und Gastronomie an den

Kosten der Beschneiung – allerdings konnte diesbezüglich noch in keiner Region

eine funktionierende Vereinbarung getroffen werden (vgl. Abegg 2011, S. 16).

Zusammenfassend ist  festzustellen,  dass die perspektivische Wirtschaftlichkeit

künstlicher Beschneiung von zahlreichen Autorinnen hinterfragt wird. Wie Trawö-

ger & Steiger 2012 zusammenfassen, drängten „hohe Investitionen in technische

Infrastruktur und laufende Kosten für die Aufrechterhaltung des Skibetriebs [...] in

der jüngeren Vergangenheit bereits kleine und mittlere Seilbahnunternehmungen

an den Rand ihrer Existenz. Kostenbeteiligungen größerer und wirtschaftlich er-

folgreicherer Skigebiete werden bereits diskutiert.“ (S. 29) Da jede zusätzliche In-

vestition in für die Kunstschneeproduktion erforderliche Infrastruktur aufgrund der

Amortisationszeit sowie aufgrund der kalkulatorischen Kosten (die verausgabten

Gelder stehen nicht mehr für den Aufbau alternativer Angebote zur Verfügung,

die Eingriffe ins Landschaftsbild schmälern die Attraktivität der Destination für an-

dere Zielgruppen) zu einer weiteren wirtschaftlichen Bindung an die Aufrecht-er-

haltung des Wintersportbetriebs beiträgt (vgl.  Balbi 2012, S. 6), sollte jede ent-

sprechende Kapitalanlage gründlich geprüft werden – das im Rahmen dieser Ar-

beit entwickelte DSS kann hierfür einen Bezugsrahmen liefern (siehe Kapitel 7).
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6. Beschneiung und Klimawandel

6.1 Stand der Klimaforschung

6.1.1 Natürlicher und anthropogener Klimawandel

Unter dem Begriff des Klimas wird laut DWD (zitiert nach  Usinger 2015, S. 11)

die Gesamtheit aller Wettererscheinungen verstanden, „die den mittleren Zustand

der Atmosphäre an einem bestimmten Ort oder […] Gebiet charakterisieren. Es

wird repräsentiert durch die statistischen Gesamteigenschaften […] über einen

[...] langen Zeitraum von [mindestens] 30 Jahren.“ Das Klima ist zeitlich sowohl

vom Wetter – dem physikalischen Zustand der Atmosphäre zu einem bestimmten

Zeitpunkt (in der Regel eines Tages, gelegentlich auch von Zeiträumen bis zu ei-

ner Woche) – sowie der Witterung – der durchschnittlichen Entwicklung des Wet-

ters über mehrere Monate – abzugrenzen (vgl. Berchtenbreiter 2014, S. 14).

Das Klima verhält sich – global wie lokal – über sehr lange Zeiträume nicht kon-

stant, sondern ist natürlichen Schwankungen unterworfen, die etwa durch Ände-

rungen in der Intensität der Sonnenabstrahlung, plattentektonische Verschiebun-

gen, vulkanische Aktivitäten oder Änderungen an der Neigung der Erdachse ver-

ursacht werden können (vgl. Endler 2010, S. 7; Lenz 2012, S. 34). Über die Jahr-

millionen kam es so zu einem Wechsel zwischen Warm- und Kaltzeiten mit er-

heblichem Einfluss auf die Entwicklung des Lebens auf der Erde.

Seit Beginn der Industrialisierung in der zweiten Hälfte des 18. Jahrhunderts ver-

fügt der Mensch über die Fähigkeit, die Entwicklung des Klimas nicht nur lokal –

etwa durch Rodung und Landwirtschaft – sondern auf globaler Ebene zu beein-

flussen. Durch die zunehmende Nutzung fossiler Energieträger wie Öl, Kohle und

Gas sowie durch andere menschliche Aktivitäten kommt es zu einer Freisetzung

von CO2 und anderen Treibhausgasen – wie insbesondere Methan – in die Atmo-

sphäre (vgl.  Grussmann et al. 2014, S. 4). Diese Gase verstärken den natürli-

chen Treibhauseffekt der Erdatmosphäre, durch den von der Erdoberfläche abge-

gebene Infrarotstrahlung in der Atmosphäre absorbiert und anteilig wieder auf die

Erde zurückgestrahlt wird (vgl. Lenz 2012, S. 36). Seit Beginn der Industrialisie-

rung hat die atmosphärische Konzentration von CO2 um 31% sowie die Konzen-

tration von Methan um 151% zugenommen (vgl. Pinnow 2014, S. 4). 
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Der durch den Menschen verursachte Klimawandel wird in Abgrenzung zum na-

türlichen als anthropogener Klimawandel bezeichnet. Es handelt sich um ein äu-

ßerst  komplexes Phänomen,  welches von einer Vielzahl  an teilweise unzurei-

chend erforschten Wechselwirkungen, Prozessen und Rückkopplungen bestimmt

wird, die sich – global wie regional – abschwächend oder verstärkend auswirken

können. Während der vergangenen 100 Jahre hat sich die globale Durchschnitts-

temperatur primär aufgrund menschlicher Eingriffe um 0,74°C erhöht, weshalb im

Zusammenhang mit dem anthropogenen Klimawandel häufig der Begriff der „glo-

balen Erwärmung“ Verwendung findet (vgl. Becken 2010, S. 10).

Der Stand der internationalen Forschung zum Klimawandel wird seit 1988 durch

das IPCC (Intergovernmental Panel for Climate Chance; engl. für Zwischenstaat-

licher Ausschuss für Klimaänderungen) in den sogenannten Sachstandsberichten

(Assessment Reports) aggregiert und aufbereitet. Das IPCC ist der WMO (World

Meteorological  Organization,  engl.  für  Weltorganisation  für  Meteorologie)  und

dem UNEP (United Nations Environment Programme, engl. für Umweltprogramm

der Vereinten Nationen) zugeordnet.

6.1.2 Fortschreiten des anthropogenen Klimawandels

Der anthropogene Klimawandel ist mit einer Vielzahl gravierender Folgen verbun-

den, zu denen unter anderem der langsame Anstieg des Meeresspiegels und da-

mit der Verlust von Küstenregionen, die Zunahme extremer Wetterereignisse wie

etwa von Überschwemmungen und Hurrikans und das Abtauen der polaren Eis-

schilde sowie des Permafrostbodens gehören. Eine detaillierte Betrachtung die-

ses Phänomens jenseits der Auswirkungen auf den Wintertourismus würde den

Rahmen dieser Arbeit überschreiten – es sei mit Referenz auf Bogataj 2011 (S.

5) daher nur darauf verwiesen, dass die „Bewältigung des Klimawandels weitest-

gehend  einstimmig  als  die  wahrscheinlich  größte  Herausforderung  betrachtet

[wird], vor der unser Planet […] in den kommenden Jahrzehnten [steht].“

Da sich die schon freigesetzten Treibhausgase auch mit geeigneten Maßnahmen

wie etwa massiven Aufforstungen nur über lange Zeiträume wieder aus der Atmo-

sphäre entfernen lassen, ist die zu antizipierende Entwicklung des Klimas wäh-

rend der nächsten Jahrzehnte kaum noch zu beeinflussen (vgl. Demiroglu 2016,

S. 6). Als wichtigstes klimapolitisches Ziel gilt die Begrenzung des Anstiegs der

durchschnittlichen Erwärmung der Erdoberfläche auf maximal 2°C einschließlich
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der bereits eingetretenen Erwärmung von 0,74°C im 20. und 21. Jahrhundert.

Nach Ansicht des IPCC kann diese Grenze nur dann eingehalten werden, wenn

die CO2-Konzentration in der Atmosphäre bis zum Jahr 2100 bei 450 ppm (Parts

per Million, engl. für ein Millionstel) stabilisiert werden kann. Als langfristig ver-

träglich und damit wünschenswert gilt sogar eine Begrenzung der Erderwärmung

auf 1,5°C im Vergleich zur vorindustriellen Periode (vgl. Damm et al. 2014, S. 32;

Grussmann et al. 2014, S. 4). „Bei der derzeitigen globalen, ökonomischen und

politischen Entwicklung, vor allem bei den Wirtschaftswachstumsraten und dem

damit verknüpften Emissionsausstoß, ist eine Erwärmung der Erdoberfläche von

über 2°C [jedoch] sehr wahrscheinlich.“ (Grussmann et al. 2014, S. 13).

6.2 Klimamodelle

6.2.1 Globale Klimamodelle

Die Prognose zukünftiger klimatischer Entwicklungen erfolgt auf Basis von Klima-

modellen, welche die für das Klima bedeutendsten physikalischen Vorgänge in

der Atmosphäre sowie deren wesentliche Wechselwirkungen mit anderen Syste-

men wie etwa den Ozeanen abbilden. Aufgrund ihrer Komplexität erfordern sol-

che Modelle enorme Rechenleistungen, die nur von großen Rechenzentren wie

dem Deutschen Klimarechenzentrum (DKRZ) in Hamburg erbracht werden kön-

nen (vgl. Dallhammer et al. 2015 , S. 10). Globale Klimamodelle sind mit inhären-

ten Unsicherheiten behaftet, die sich u.a. durch erforderliche Vereinfachungen,

bisher unbekannte Wirkmechanismen oder auch parallel zum anthropogenen Kli-

mawandel auftretende natürliche Klimaentwicklungen ergeben (vgl. Endler 2010,

S. 47). Hinzu kommt, dass die Klimaentwicklung über den Zeitraum von einigen

Jahrzehnten  hinaus  erheblich  vom Umfang weiterer  Treibhausgas-Emissionen

durch den Menschen abhängt – ein Faktor, dessen Prognose aufgrund vieler po-

litischer und wirtschaftlicher Facetten ebenfalls mit einem hohen Maß an Unsi-

cherheit verbunden ist (vgl. Kromp-Kalb et al. 2009, S. 24). 

Auch wenn alle Modelle übereinstimmend das weitere Fortschreiten des anthro-

pogenen  Klimawandels  vorhersagen,  besteht  somit  hinsichtlich  dessen  Ge-

schwindigkeit und Ausmaß sowie der Wahrscheinlichkeit des Überschreitens von

„Sprungpunkten“, an welchen irreversible Prozesse (wie beispielsweise das Ab-
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tauen der sibirischen Permafrostböden) ausgelöst werden, eine nicht zu beseiti-

gende Restunsicherheit (vgl. Dallhammer et al. 2015, S. 14).

6.2.2 Regionale Klimamodelle

Ein Problem beim regionalen Einsatz globaler Klimamodelle ist deren grobe, zwi-

schen 300 km und 100 km liegende Gitterauflösung. Diese macht es unmöglich,

regionale Besonderheiten (Mikroklima, Höhenlagen, größere Wasserkörper etc.)

zu berücksichtigen, wodurch die Genauigkeit der Prognosen abnimmt (vgl. Benoit

2012, S. 498). Da sich der Klimawandel in unterschiedlichen Regionen und ins-

besondere Naturräumen jedoch stark unterschiedlich manifestiert  (vgl.  Bogataj

2011, S. 11; Balbi et al. 2011, S. 53; Enke 2010,  S. 101), werden kleinräumige

Klimamodelle benötigt, um dem zunehmenden Interesse an konkreten regionalen

Klimaprognosen zur  Planung von Klimaanpassungsmaßnahmen Rechnung zu

tragen. „Vor allem im komplexen Gelände – z. B. Mittel- und Hochgebirge – ist

eine hohe räumliche Auflösung essenziell, da meso- und mikroskalige Prozesse

einen entscheidenden Einfluss auf das Gebirgsklima haben.“ (Endler 2010, S.

101) Derartige Modelle werden – höchst rechenleistungsaufwändig – mittels un-

terschiedlicher mathematischer Verfahren sowie unter Verwendung lokaler Klima-

daten aus globalen Modellen abgeleitet  (vgl. Grussmann et al. 2014, S. 14). 

Zur Prognosegenauigkeit regionaler Klimamodelle finden sich in der gesichteten

Literatur unterschiedliche Aussagen. Während zahlreiche Veröffentlichungen auf

entsprechende Modelle zurückgreifen, ist laut  Endler 2010 zu hinterfragen, wie

gut die Modelle „die klimatische Komplexität mit dem für ein heterogenes Gelän-

de charakteristischen Lokalklima [wiedergeben] können“ (S. 48). 

Zu den meistgenutzten regionalen Klimamodellen gehört das  REMO (Regional

Modell)  –  ein seit  1993 kontinuierlich durch den DWD, das DKRZ,  das Max-

Planck-Institut für Meteorologie (MPIfM) und das Helmholtz-Zentrum Geesthacht

(HZG) fortentwickeltes, dynamisches Klimamodell mit einer Gitterauflösung von

10  km (dies  ist  derzeit  die  feinstmögliche  Auflösung  regionaler  Klimamodelle

überhaupt, vgl.  Dallhammer et al. 2015, S. 11) und einer temporalen Auflösung

bis  auf  Stundenebene,  dessen  historische  Ursprünge  im  Europa-Modell  des

DWD – einem Modell zur Wettervorhersage –  liegen. REMO prognostiziert unter

anderem Luftfeuchtigkeit und Lufttemperatur (jeweils im Tagesmittel) in den drei

IPCC-Emissionsszenarien A1B, A2 und B1 (siehe Kapitel 6.2.3) und ist daher zur
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Vorhersage der Feuchttemperatur geeignet. Die derzeit im REMO verfügbaren

Daten umfassen die Jahre zwischen 1950 und 2100 (vgl. Schmidt et al. 2010, S.

405; Prex 2015, S. 15). Gemeinsam mit dem ebenfalls durch das DWD mitentwi-

ckelten COSMO-CLM, ist REMO das im deutschsprachigen Raum derzeit meist-

genutzte regionale Klimamodell (vgl. Kreilkamp 2011, S. 204).

6.2.3 Emissionsszenarien

Um die zukünftige Klimaentwicklung prognostizieren zu können, müssen Annah-

men über den weiteren Umgang der Menschheit mit den Herausforderungen des

Klimawandels und insbesondere über die politische und wirtschaftliche Entwick-

lung und damit auch über die Entwicklung der anthropogenen Einträge von Treib-

hausgasen getroffen werden. Das IPCC hat hierzu im Jahr 2000 vier Emissions-

szenarien (A1, A2, B1 und B2) entwickelt, wobei das Szenario A1 in drei Unter-

szenarien (A1FI, A1T und A1B) zerfällt, insgesamt also sechs mögliche Ausgän-

ge skizziert werden (vgl. Prex 2015, S. 12; Grussmann et al. 2014, S. 11). Die in

diesen Szenarien jeweils angenommene Entwicklung soll nachfolgend kurz auf

Basis des IPCC Fourth Assessment Reports (IPCC 2007) dargestellt werden:

• A1FI:   Eine rückläufige Weltbevölkerung, ein hoher Grad an technischer 

Innovation, ein hoher Grad an Globalisierung und ein rasches globales 

Wirtschaftswachstum bei primärem Einsatz fossiler Energiequellen. Bei 

A1FI handelt es sich um das im Ergebnis negativste Szenario.

• A1T:   Identische Entwicklung wie A1FI, aber bei primärem Einsatz 

nichtfossiler, regenerativer Energiequellen.

• A1B:   Identische Entwicklung wie A1FI bei ausgewogenem Einsatz von 

fossilen und nichtfossilen, regenerativen Energiequellen. Der Eintritt von 

A1B gilt mit Blick auf die wirtschaftliche Entwicklung sowie den Energie-

verbrauch derzeit als besonders wahrscheinlich, weshalb A1B häufig als 

Basis globaler wie regionaler Klimamodelle dient.

• A2:   Eine weiterhin wachsende Weltbevölkerung, ein geringerer Grad 

an Globalisierung und Wirtschaftswachstum sowie eine weitgehend 

regional entkoppelte wirtschaftliche Entwicklung.

Version 1.0 Seite 55 von 130 26.06.2019



Christian Reinboth infernum q795269

• B1:   Ein schneller Umbau der globalen Wirtschaft in Richtung einer 

Informations- und Dienstleistungsökonomie, eine breite Einführung 

ressourcenschonender und umweltfreundlicher Technologien sowie

ein weitgehender Umstieg auf regenerative Energiequellen. Von allen

Szenarien fällt der anthropogene Klimawandel in B1 am geringsten aus.

• B2:   Eine ähnliche Entwicklung wie in B1, die aber stärker lokal als

global geprägt wird, weshalb sowohl das Wirtschaftswachstum als

auch die Durchsetzung neuer Technologien langsamer verlaufen. 

Die Klimaszenarien liegen mit einem bis zum Jahr 2100 prognostizierten Anstieg

der globalen Durchschnittstemperatur von 1,1°C (B1) bis 6,4° (A1FI) weit ausein-

ander (vgl. Lenz 2012, S. 13) und bilden somit ein breites Spektrum zukünftiger

Entwicklungsmöglichkeiten ab. Einige Autoren wie etwa  Becken et al. 2015 (S.

430) halten sämtliche Szenarien angesichts der wirtschaftlichen und politischen

Entwicklungen der letzten Jahre für zu optimistisch und gehen davon aus, dass

insbesondere die positiveren B-Szenarien nicht mehr erreicht werden können.

Grundlage der meisten politischen Diskussionen im deutschsprachigen Raum ist

gegenwärtig das Szenario A1B (vgl.  Kreilkamp 2011, S. 204), das – wie darge-

stellt – als plausibel und „mittelgut“ gilt, obwohl es einen Anstieg der durchschnitt-

lichen Erdtemperatur von 2,8°C bis zum Jahr 2100 prognostiziert und damit das

klimapolitische „Zwei-Grad-Ziel“ klar verfehlt (vgl. Grussmann et al. 2014, S. 13;

Bräuer et al. 2009, S. 5; Bender et al. 2011, S. 406). 

6.3 Konsequenzen für den Wintersport

6.3.1 Bereits eingetretene Folgen

Der Klimawandel schreitet in unterschiedlichen klimatischen Regionen mit unter-

schiedlicher Geschwindigkeit voran, wobei Bergregionen als besonders verwund-

bar gelten (vgl.  Bogataj 2011, S. 7). Als beispielhaft für das besonders rasche

Fortschreiten des Klimawandels in einem Hochgebirge kann die klimatische Ent-

wicklung in den Alpen betrachtet werden. Da in den Alpen schon seit über 200

Jahren meteorologische Messungen vorgenommen werden, liegen für diesen Kli-

maraum besonders viele Daten vor (vgl. Bender et al. 2011, S. 406). Diese Daten

zeigen, dass sich die Durchschnittstemperatur in den Alpen zwischen 1900 und
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1990 um 2°C erhöht hat, während der durchschnittliche globale Temperaturan-

stieg im gleichen Zeitraum bei 0,78°C lag (entsprechende Untersuchungen aus

den frühen 2000ern werden u.a. zitiert in Balbi et al. 2010, S. 1; Bonzanigo et al.

2016, S. 637 und  Grussmann et al. 2014, S.4). Diese Geschwindigkeitsdifferenz

des Temperaturanstiegs ist in der letzten Dekade von der doppelten auf die drei-

fache Geschwindigkeit angestiegen (vgl. Sippel 2017, S. 43).

An keiner  anderen Entwicklung zeigt  sich  der  rasante  klimatische Wandel  im

Hochgebirge so deutlich,  wie  am Rückgang der  Alpengletscher,  die  zwischen

1850 und 2010 rund die Hälfte ihres Volumens eingebüßt haben (vgl. Balbi et al.

2010, S. 1;  de Jong 2013, S. 20). Von 95 Gletschern in der Schweiz befinden

sich derzeit 92 auf dem Rückzug, während nur ein einziger expandiert (vgl. Paul

et al. 2013, S. 54 f.). Auch wenn das Zwei-Grad-Ziel gehalten werden kann, wer-

den die Gletscher bis zum Jahr 2100 vermutlich fast vollständig verschwinden.

Das schnellere Fortschreiten des Klimawandels in Hoch- wie Mittelgebirgsregio-

nen wirkt sich bereits heute erkennbar auf den Wintertourismus aus, der wieder-

um als besonders klimasensibel gilt (vgl. Abegg 2012, S. 30). Die durchschnittli-

che Schneedichte und Schneedeckendauer gingen um mehrere Wochen zurück

(vgl. Beniston 2012, S. 352), Niederschläge während des Winters treten verstärkt

in Form von Regen auf (vgl. Grussmann et al. 2014, S. 14), das Hochwasserrisi-

ko stieg deutlich an (vgl.  Bogataj 2011, S. 10) und der alpine Permafrostboden

taut auf Tiefen von bis zu 7 m auf (vgl. Paul et al. 2013, S. 58). Balbi et al. 2011

(S. 53) stuften bereits 2011 rund 9% der größeren Skigebiete in den Alpen als

nicht mehr schneesicher ein. Berichte über besonders ungewöhnliche Wärmepe-

rioden  und  geringe  Schneehöhen in  den  Saisons  2006/2007,  2014/2015  und

2015/2016 finden sich bei Huss et al. 2016 (S. 37/38), Zweifel et al. 2016 (S. 13),

Erdlinger & Wissensteiner 2013 (S. 9),  Paul et al. 2013 (S. 53),  Falk 2010 (S.

912), Dingeldein 2017 (S. 36) und Burakowski & Magnusson 2012 (S. 3).

Aber auch in zahlreichen Wintersportgebieten außerhalb des alpinen Raums ver-

schlechtern sich die für einen wirtschaftlichen Betrieb erforderlichen klimatischen

Rahmenbedingungen – so mussten etwa in der Saison 2014/2015 24 von 66 in-

ternationalen Wintersportwettbewerben im norwegischen Trondelag aufgrund der

Witterung ersatzlos abgesagt werden (vgl. Dieseth 2016, S. 1). Laut Burakowski

& Magnusson 2012 (S. 5) haben die sich ändernden Witterungsbedingungen we-
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sentlich  dazu  beigetragen,  dass  der  Umsatz  der  US-Wintersportindustrie  zwi-

schen 1999 und 2010 um über eine Milliarde Dollar zurückging, wodurch es zum

Verlust von 27.000 Arbeitsplätzen kam. In Falk 2013 (S. 377) werden Statistiken

der National Ski Areas Association (NSAA; der Nationalverband der US-Skigebie-

te) zitiert, aus denen hervorgeht, dass zwischen 1982 und 2010 insgesamt 264

von 735 (~ 36%) aller US-Skiressorts aufgegeben wurden oder Insolvenz anmel-

den mussten. In Japan wurden im gleichen Zeitraum 147 Ressorts geschlossen,

in Australien stellten allein zwischen 1995 und 2011 rund 20% der Skigebiete den

Betrieb dauerhaft ein. Neben dem Klimawandel sind auch die demografische Ent-

wicklung sowie das nachlassende touristische Interesse am Wintersport (siehe

hierzu auch Kapitel 9.1) als Treiber dieser Entwicklung zu betrachten.

Weltweit hat die durchschnittliche Schneebedeckung seit den 1960ern um 10%

abgenommen (vgl. Dar et al. 2014, S. 2250). Die WTO (World Tourism Organiza-

tion, engl. für Weltorganisation für Tourismus) der Vereinten Nationen stuft den

Klimawandel seit 2003 vor diesem Hintergrund als wesentliche Bedrohung für die

Zukunft des Wintersporttourismus ein (vgl. Balbi et al. 2010, S. 1).

6.3.2 Zu antizipierende Folgen

Mit Blick auf die zu antizipierenden Folgen des Klimawandels für den Wintersport

besteht durch die gesichtete Literatur hindurch Einigkeit: Der Klimawandel wird –

auch in weniger extremen Ausprägungen – in jedem Fall zu einer weiteren Verrin-

gerung des Schneefalls, zu einer Verschlechterung der Rahmenbedingungen für

die Beschneiung, zu einem massiven Rückzug der Gletscher, zu einer Zunahme

von Hitze- und Starkregenperioden während der Wintersaison sowie zu einem

allgemein erhöhten Risiko für extreme Wetterereignisse führen (vgl. Bischof et al.

2017, S. 228;  Davoudi et al. 2012, S. 167 f.; Balbi et al. 2010, S. 3;  Dingeldein

2017, S. 33). In einigen Regionen ist zudem mit einer Reduktion der Wasserver-

fügbarkeit zu rechnen, wodurch sich die Rahmenbedingungen für die künstliche

Beschneiung weiter verschlechtern. „Besonders betroffen sind die tiefer gelege-

nen Skigebiete sowie die Saisonrandzeiten, insbesondere der Saisonauftakt mit

den für den Geschäftserfolg so wichtigen Weihnachtsferien.“ (Abegg 2012, S. 31)

Eine auf Basis des Klimamodells REMO (siehe Kapitel 6.2.2) von Berchtenbreiter

2014 (S. 24) durchgeführte Analyse prognostiziert für den Alpenraum bis 2050 ei-

nen Anstieg der Durchschnittstemperatur von 2°C sowie bis 2085 einen Anstieg

Version 1.0 Seite 58 von 130 26.06.2019



Christian Reinboth infernum q795269

von weiteren 1-2°C. Eine technische Beschneiung könnte – vorbehaltlich wesent-

licher technischer Fortschritte – unter diesen Bedingungen in vielen Skigebieten

nicht über die 2050er hinaus aufrechterhalten werden (vgl. Damm et al. 2014, S.

9). In Abegg 2012 werden Prognosen der Organisation für wirtschaftliche Zusam-

menarbeit und Entwicklung (OECD; Organisation for Economic Co-Operation and

Development) zitiert, nach denen der Anteil schneesicherer Skigebiete in den Al-

pen bei einer Erwärmung von 1°C von derzeit 90% auf 75% sinken würde. „Bei

2°C wären noch 61%, bei 4°C nur noch 30% der Skigebiete schneesicher.“ (S.

30) Im Alpenraum wird es dadurch „zu starken Umsatzeinbußen [...]  kommen.

Der Klimawandel bedingt im Jahr 2050 eine Reduktion der Gesamtausgaben im

alpinen Wintertourismus in der Höhe von 505,5 Mio. Euro. Diese Kosten steigen

bis zum Jahr 2100 auf 1,1 Mrd. Euro pro Jahr an.“ (Grussmann et al. 2014, S. 2)

Während sich die meisten Publikationen aufgrund der enormen wirtschaftlichen

Bedeutung mit den Folgen des Klimawandels für die Alpen befassen, sind auch

die Prognosen für andere Wintersportregionen negativ: Für die europäischen Mit-

telgebirge sagen Bräuer et al. 2009 (S. 69) im Falle eines Verfehlens des Zwei-

Grad-Ziels das Ende des Wintersports bis 2030 voraus; bereits eine Erwärmung

um 1°C – die kaum mehr abzuwenden sein wird – wäre  Pinnow 2014 zufolge

„ausreichend, um die schneesicheren Gebiete [in Deutschland] um 60% unter

das heutige Niveau [zu] verringern.“ (S. 14) Negative Prognosen zur Zukunft der

Wintersportindustrie finden sich etwa für Australien in Barnett et al. 2015 oder für

die USA in Dawson & Scott 2013 und Lazar & Williams 2010. Selbst in besonders

hochgelegenen Gegenden wie dem Himalaya-Gebirge auf dem indischen Sub-

kontinent wird mit einem erheblichen negativen Einfluss des Klimawandels auf

den Wintersporttourismus gerechnet (vgl. Dar et al. 2014, S. 2560).

Besonders eindrücklich werden die sich weltweit verschlechternden Wintersport-

bedingungen durch eine Analyse von  Scott et al. 2015 (S. 922) illustriert, nach

der in 8 (bei einem Niedrigemissionsszenario) bis 9 (bei einem Hochemissions-

szenario) der bisherigen 19 Austragungsorte der Olympischen Winterspiele bis

2050 auch mit Beschneiung keine Winterolympiade mehr stattfinden könnte.
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6.4 Adaptionsstrategien

6.4.1 Adaption und Mitigation

Beim Umgang mit der Herausforderung des Klimawandels sind zwei wesentliche

Strategien zu unterscheiden: Einerseits die Anpassung an die sich verändernden

klimatischen Bedingungen – die Adaption – sowie andererseits den Versuch, das

Ausmaß der Veränderungen durch die Senkung von Emissionen, die Aufforstung

von Wäldern als CO2-Senken oder andere geeignete Maßnahmen zu begrenzen

– die Mitigation (vgl. Prex 2015, S. 37; Matern et al. 2009, S. 27). 

Da der inhaltliche Fokus dieser Arbeit auf der künstlichen Beschneiung liegt, soll

auf die davon weitgehend unabhängigen Mitigationsstrategien nicht weiter einge-

gangen werden. Da der CO2-Abdruck eines durchschnittlichen Skiurlaubs zu fast

drei Vierteln durch die An- und Abreise zum Urlaubsort sowie durch die Mobilität

vor Ort bestimmt wird, sind effiziente Mitigationsstrategien vor allem solche, die

sich mit der Reorganisation von Verkehr befassen (vgl. Sippel 2017, S. 42; Borck

2013, S. 23). Aus dem gleichen Grund wird die Beschneiung – die mit weitem Ab-

stand wichtigste Strategie zur Aufrechterhaltung des klassischen Wintersporttou-

rismus (vgl. Dawson & Scott 2013, S. 244; Davoudi et al. 2012, S. 178) – nach-

folgend ebenfalls nicht separat betrachtet, sondern lediglich eine kurze Darstel-

lung weiterer wichtiger Strategien gegeben. Eine Übersicht aller wesentlichen Ad-

aptionsstrategien findet sich in Abbildung 6.

6.4.2 Technische Aufrechterhaltung

Schneemanagement

Der immer effizientere Umgang mit Natur- und insbesondere mit Kunstschnee im

Sinne einer zu verwaltenden Ressource fasst unter dem Begriff des Schneema-

nagements eine Reihe technischer und organisatorischer Maßnahmen zusam-

men. Zu diesen gehören unter anderem das Anlegen von Langzeit-Schneedepots

durch die thermische Isolation des Schnees mit Sägespänen und Folien über den

Sommer sowie die Schaffung von Kurzzeit-Schneedepots zur Lagerung von bei

günstigen Witterungsbedingungen zu viel produziertem Kunstschnee (vgl. Landt-

wing & Götz 2016, S. 594; Abegg 2011, S. 16; Benoit 2012, S. 102; Lintzen 2012,

S. 13). Zu den weiteren Maßnahmen des Schneemanagements zählen die Ver-

teilung von Schnee mittels Fahrzeugen, die Beschattung von Pisten, die Bearbei-
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tung von Pisten in einer Weise, die die Höhe des für den Betrieb erforderlichen

Schnees verringert, sowie die Nutzung von Schneezäunen zur Verhinderung von

Schneeverwehungen (vgl.  Berchtenbreiter 2014, S. 29;  Davoudi et al. 2012, S.

178). 

In größeren Skiressorts ist das Schneemanagement nicht selten hochtechnisiert

und umfasst unter anderem die Nutzung von Geoinformationssystemen, Wärme-

sensorik und Videoüberwachung (vgl. Landtwing & Götz 2016, S. 593).

Ausweichen in Gunsträume

Eine der aufwändigsten, zugleich aber erfolgreichsten Anpassungsstrategien ist

das Ausweichen in Gunsträume bzw. die „Flucht nach oben“. Dabei werden tie-

fergelegene  Standorte  zugunsten  höhergelegener  Standorte  aufgegeben,  die

bessere Rahmenbedingungen für natürlichen Schneefall und für die Produktion

von Kunstschnee bieten (vgl. Yang & Wan 2010, S. 58). Die „Flucht nach oben“

gilt als eine ökologisch besonders kritische Form der Klimaadaption, da der Spe-

zialisierungsgrad von Lebewesen sowie die Empfindlichkeit und klimatische Vul-
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nerabilität von Ökosystemen mit der Höhenlage ansteigt und der Massentouris-

mus damit mehr und mehr in Gebiete eindringt, in denen er schwere und mögli-

cherweise irreparable Schäden verursacht (vgl. Gray 2017, S. 36; Pinnow 2014,

S. 31). Hinzu kommt, dass sowohl der bauliche und Versorgungsaufwand sowie

die höheren Transportkosten als auch das Risiko von witterungsbedingten Be-

triebsunterbrechungen und die Lawinengefahr mit der Höhe ansteigen und ein

Ausweichen in immer höhere Areale somit auch wirtschaftlich nur eingeschränkt

sinnvoll ist (vgl. Abegg 2011, S. 17).

Weitere Strategien

Zu den weiteren Strategien der technischen Aufrechterhaltung des Skibetriebs

gehören das Einbringen von Silberoxidpartikeln als Kondensationskeime in die

Wolkendecke (meist per Flugzeug) zur Unterstützung der natürlichen Schneebil-

dung (das sogenannte „Cloud Seeding“, siehe hierzu Benoit 2012, S. 103) sowie

die vollständige bauliche Abschirmung des Pistenareals von den Witterungsbe-

dingungen vor Ort durch die Errichtung klimatisierter Skihallen, wie sie etwa be-

reits in Bispingen und Oberhof zu finden sind (vgl. Usinger 2015, S. 43). Seit eini-

gen Jahren gibt es zudem Bestrebungen, fehlenden Natur-  oder Kunstschnee

durch andere Materialien mit ähnlichen fahrerischen und idealerweise auch opti-

schen Eigenschaften zu ersetzen. So wurde etwa im Rahmen des BMBF-geför-

derten Projekts BioGlizz von einem Konsortium um die TU Dresden eine algen-

basierte Gleitunterlage für den Skisport entwickelt (siehe hierzu Valtingoier 2015).

6.4.3 Angebotsalternativen

Sommertourismus

Zahlreiche Quellen weisen darauf hin, dass der Sommertourismus in den klassi-

schen Wintersportgebieten im Gegensatz zum Wintertourismus durch den Klima-

wandel gestärkt werden könnte. Als Gründe hierfür werden unter anderem die

Verlängerung der Sommersaison, das mildere Wetter während des Herbstes so-

wie die zu erwartende „Hitzeflucht“ aus Großstädten in die im Sommer noch ver-

gleichsweise kühleren und feuchteren Höhenlagen aufgeführt (vgl.  Endler 2010,

S. 60 f.; Schmidt 2015, S. 32; Pröbstl-Haider & Pütz 2016, S. 17). 

Die zum Erhalt des Wintertourismus stattfindende „Flucht nach oben“ könnte die-

sen Effekt noch verstärken, da touristische Infrastruktur in immer größeren Hö-
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henlagen errichtet wird, die perspektivisch zwar auch keine absolute Schneesi-

cherheit mehr garantieren können, die aber während des Sommers witterungsbe-

dingt für hitzegeplagte Großstädterinnen höchst attraktive Urlaubsziele sein dürf-

ten (vgl. Demuth et al. 2010, S. 43). Autoren wie Bender et al. 2011 rechnen so-

gar mit einer Rückkehr der in den 1970ern und 1980ern populären „Sommerfri-

sche“ als innereuropäischem Urlaubstrend (S. 415).

Als besonders interessante Sommer-Zielgruppe hat sich in den letzten Jahren die

einkommensstarke,  schnell  wachsende,  junge  und  „höhenaffine“  Gruppe  der

Mountainbikerinnen erwiesen (vgl. Kurtz 2015, S. 9). Für diese Zielgruppe spielt

allerdings – neben Infrastrukturfaktoren wie Beschilderung, Wegequalität und Un-

terkünften – das Natur- und Landschaftserlebnis eine herausragende Rolle bei

der Wahl der Urlaubsregion (vgl  Sand 2018, S. 30). Es ergibt sich insofern ein

Zielkonflikt  in der Vermarktung einer Urlaubsregion gegenüber Mountainbikern

(möglichst naturnahe und attraktive Landschaft) und Skifahrern (möglichst große

gefühlte Schneesicherheit durch gut sichtbare technische Ausstattung).

Wintertourismus

Auf den Wintertourismus ausgerichtete Alternativen können entweder darauf ab-

zielen, Ski-Langlauf und Alpin-Ski so gut wie möglich zu emulieren oder aber die-

se  Aktivitäten  durch  andere  attraktive  Angebote  zu  substituieren.  Zur  ersten

Gruppe der Alternativen zählen etwa das Gras- und Rollenskifahren oder die Nut-

zung von befeuchteten Plastikmatten als Schneeersatz (vgl. hierzu etwa Usinger

2015, S. 45 f.). Zur zweiten Gruppe der Alternativen zählen alle schneeunabhän-

gigen Angebote, die während des Winters im Außenraum wie insbesondere völlig

wetterunabhängig in Gebäuden (vgl.  Balbi et al. 2013, S. 40) möglich sind, also

etwa Wellness-,  Kultur-,  Hallensport-  oder  Kulinarik-Angebote.  Hinzugerechnet

werden  können  auch  schneeabhängige  Angebote,  für  die  deutlich  weniger

Schnee benötigt wird, wie etwa Schneeschuhwanderungen, Winterwanderungen

oder Wildtierfütterungen. Alle Außenaktivitäten sind letztlich aber auch von der At-

traktivität und Akzeptanz der winterlichen Landschaft abhängig, die wiederum un-

ter fehlendem Naturschnee leidet (vgl. Eriksen et al. 2011, S. 15).

Eine Sonderstellung nehmen sogenannte Naturschnee-Konzepte ein: In einigen

Wintersportregionen wie etwa dem bayerischen Achental wird bewusst auf den

Einsatz künstlicher Beschneiung verzichtet, so dass eine Nutzung der Pisten nur
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möglich ist, wenn ausreichend Naturschnee fällt (vgl. Schmidt 2015, S. 46). Auch

in solchen Regionen bemüht man sich in der Regel intensiv um den Aufbau von

schneeunabhängigen Angeboten zur Überbrückung von Mangelperioden.

Auch wenn Abegg 2011 (S. 19) einen Markt für den „wintersportlosen“ Wintertou-

rismus sieht, der zwischen 25% und 50% des aktuellen Besuchervolumens um-

fassen könnte, halten  Davoudi et al. 2012 (S. 178) und  Pröbstl-Haider & Pütz

2016 alle Angebotsalternativen dadurch für limitiert, dass eine völlig oder weitge-

hend schneefreie Landschaft auch für den nicht an Wintersport interessierten Be-

sucher im Winter unattraktiv wirkt. Hinzu kommt, dass ein Großteil der an Winter-

sport interessierten Gäste sich derzeit noch eher wenig für Angebotsalternativen

erwärmen kann: „Selbst ein ideales Alternativprogramm kann bei einem 7-tägigen

Urlaub nur für 15% der Wintersportlerinnen und Wintersportler das Skifahren voll-

ständig ersetzen.“ (Pröbstl-Haider & Pütz 2016, S. 17).  Auch Abegg 2011 weist

vor diesem Hintergrund darauf hin, dass das „Potential der schneeunabhängigen

Produkte nicht überschätzt werden“ darf (S. 19).
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7. Konzeptionierung eines Decision Support Systems

7.1 Methodisches Vorgehen

Im Rahmen der Sichtung der in Kapitel 2 aufgeschlüsselten Vielzahl an Quellen

wurde deutlich, dass eine qualifizierte Empfehlung hinsichtlich der technischen

Realisierbarkeit, der ökologischen Verträglichkeit sowie der wirtschaftlichen Trag-

fähigkeit von künstlicher Beschneiung an einem spezifischen Standort auf zwei

wesentlichen Säulen ruhen sollte,

a)  einer qualitativen Betrachtung der an diesem Standort  geltenden Rahmen-

bedingungen wie etwa der generellen Verfügbarkeit von Wasser, der Nähe des

Planungsgebiets zu Schutzgebieten oder der Akzeptanz künstlicher Beschneiung

durch Anwohner und lokale Interessensgruppen sowie

b) einer quantitativen Analyse historischer und prognostischer Daten zum lokalen

Mikroklima mit Blick auf die technische Realisierbarkeit von künstlicher Beschnei-

ung während der Amortisationsdauer der zu tätigenden Investitionen. 

Wie  Damm et al. 2014 (S. 9) oder auch Dawson et al. 2009 (S. 1) bemängeln,

werden in vielen allgemeinen Betrachtungen zur Zukunft der Skiindustrie sowohl

das lokale Mikroklima einzelner zu bewertender Skigebiete, als auch die Möglich-

keit der künstlichen Beschneiung weitgehend außer Acht gelassen. Dieser Kritik

soll im zu konzipierenden Modell durch die Berücksichtigung des örtlichen Klimas

sowie durch die Integration der Möglichkeit künstlicher Beschneiung als Bewer-

tungsfaktor Rechnung getragen werden.

Die Zweiteilung in die qualitative Betrachtung der Rahmenbedingungen (a) und

die quantitative Analyse der Beschneibarkeit (b) an einem Standort wurde in den

nachfolgenden Kapiteln sowie bei der Softwareumsetzung des Entscheidungsfin-

dungsmodells in Form eines DSS durchgehend berücksichtigt. Während im Rah-

men dieser Arbeit  von der weniger komplexen Betrachtung der Rahmenbedin-

gungen  zur  komplexeren  Analyse  der  lokalen  Beschneibarkeit  übergegangen

wird, empfiehlt sich für die praktische Anwendung des Modells die umgekehrte

Abfolge: Erst wenn feststeht, dass eine technische Beschneiung an einem zu be-

planenden Standort überhaupt über einen angemessenen Zeitraum realisierbar

sein wird, lohnt sich die Betrachtung der sonstigen Rahmenbedingungen.
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7.2 Identifizierte Einflussfaktoren

7.2.1 Qualitative Betrachtung

Im Rahmen des Literaturreviews sowie einer parallel zu diesem durchgeführten

Sichtung von Presseberichten aus den vergangenen zehn Jahren über Probleme

und Erfolge bei Planung und Bau von Beschneiungsanlagen sowie bei deren Be-

trieb, konnten folgende positiv wie negativ wirkende Faktoren identifiziert werden.

Positiv wirkende Faktoren

Lage: Die Eignung der Lage eines Projektionsgebietes hängt primär von dessen

Höhe (in  m ü.NN)  sowie  von  der  Himmelsrichtung  der  Pistenausrichtung  ab.

Nordhänge gelten aufgrund der stärkeren Sonnenexposition als am schlechtes-

ten, Südhänge als am besten beschneibar. Als nachteilig gelten zudem Areale,

die häufig starken Winden ausgesetzt sind. Da letzterer Aspekt im DSS im Rah-

men der quantitativen Betrachtung abgebildet wird, werden im Rahmen der quali-

tativen Betrachtung lediglich Höhenlage und Ausrichtung berücksichtigt.

Wasserverfügbarkeit: Der Verfügbarkeit  von Wasser gewinnt als Standortfaktor

zunehmend an Bedeutung. Projektionsgebiete, in denen ein oder mehrere Fließ-

gewässer  existieren,  die  ausreichend  Wasser  führen,  um eine  durchgehende

Entnahme zur Befüllung von Speicherbecken zu gewährleisten, sind gegenüber

Gebieten im Vorteil, in denen diesbezüglich Unsicherheiten zu konstatieren sind.

Alternativangebote: Da auch mit  künstlicher Beschneiung keine durchgehende

Schneesicherheit mehr garantiert werden kann, ist ein wirtschaftlich erfolgreicher

Betrieb insbesondere in solchen Wintersportgebieten möglich, in denen im Falle

eines Ausfalls attraktive, von der Zielgruppe akzeptierte und unmittelbar verfüg-

bare Alternativangebote existieren.

Bekanntheitsgrad: Der letzte der fünf identifizierten Positiv-Faktoren weist keinen

direkten Zusammenhang mit der Frage der technischen und wirtschaftlichen Be-

schneibarkeit auf, sondern ließe sich auch auf die Bewertung touristischer Regio-

nen mit vollständig anderer Ausrichtung übertragen: Das mit  der Investition in

touristische Infrastruktur verbundene Risiko ist – erwartbar – in solchen Regionen

geringer, die sich bereits als touristische Destinationen etabliert haben und die

daher über eine Grundbekanntheit und eine Stammbesucherschaft verfügen. Da

ein hohes Besucheraufkommen nicht selten mit einer größeren Diversifikation der
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touristischen Angebote einhergeht, müssen die Faktoren „Bekanntheitsgrad“ und

„Alternativangebote“ als interdependent betrachtet werden.

Negativ wirkende Faktoren

Schutzgebietsnähe: Die Nähe zu ökologischen Schutzgebieten wie etwa Natio-

nalparks oder Biosphärenreservaten erschwert die Planung und den Betrieb von

Beschneiungsanlagen, da – etwa mit Blick auf die Wasserentnahme oder den

Zusatz von Additiven – in der Nähe solcher Schutzgebiete höhere Auflagen zu er-

füllen sind und zudem mit  mehr Widerstand von Umweltverbänden gerechnet

werden muss. Die Wahrscheinlichkeit eines Scheiterns während der Planungs-

phase ist hier grundsätzlich als größer einzuschätzen.

Mangelnde Akzeptanz: Widerstand gegen den Aufbau von Beschneiungsinfra-

struktur – etwa durch Umweltverbände oder lokale politische Akteure – kann ein

Planungsvorhaben erheblich verzögern, verteuern und sogar zu dessen Schei-

tern führen.  Analog zu Bekanntheitsgrad und Alternativangeboten ist  auch bei

den Faktoren „Schutzgebietsnähe“ und „mangelnde Akzeptanz“ von einer Inter-

dependenz auszugehen.

Zur zu empfehlenden Mindesthöhe für den erfolgreichen Betrieb eines Skigebiets

– sowohl unter den gegenwärtigen als auch unter den zukünftigen klimatischen

Bedingungen – konnten in der gesichteten Literatur verschiedene voneinander

abweichende Angaben gefunden werden.

Fundstelle Wert Fundstelle Wert

Steiger 2010, S. 3 ≥ 1.200 m Endler 2010, S. 11 ≥ 1.500 m

Davoudi et al. 2012, S. 166 ≥ 1.300 m

Tabelle 1: Schwellwerte für die gegenwärtig zu empfehlende Mindesthöhe.

Fundstelle Wert Fundstelle Wert

Brunner 2013, S. 24 ≥ 1.300 m Campos et al. 2018, S. 9 ≥ 2.000 m

Bräuer et al. 2009, S. 69 ≥ 1.500 m Beniston 2012, S. 356 ≥ 3.000 m

Balbi 2012, S. 4 ≥ 1.500 m Prex 2015, S. 11 ≥ 3.000 m

Tabelle 2: Schwellwerte für die zukünftig zu empfehlende Mindesthöhe.
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7.2.2 Quantitative Analyse

Im Rahmen des Literaturreviews konnten acht Parameter identifiziert werden, die

für eine quantitative Analyse der Beschneibarkeit von Bedeutung sind:

Lufttemperatur Schneehöhe (jeweils für

Luftfeuchtigkeit Ski-Alpin und Langlauf)

Feuchttemperatur Niederschlagsmenge

Dauer der Wintersaison Windgeschwindigkeit

Für fünf dieser acht Parameter (Lufttemperatur, Luftfeuchtigkeit, Feuchttempera-

tur und benötigte Schneehöhen für Ski-Alpin und Ski-Langlauf) werden in der ge-

sichteten Literatur unterschiedliche Schwellwerte benannt, die in den Tabellen 3

bis  7 wiedergegeben werden. In fast allen Fällen sind diese Werte nicht Ergeb-

nisse  experimenteller  oder  analytischer  Arbeiten  der  Autorinnen  und  Autoren,

sondern  Übernahmen  der  Angaben  von  Herstellern  und  Skigebietsbetreibern

oder aus älteren Publikationen (teilweise zurückreichend bis in die 1930er). 

Alle Parameter werden nachfolgend noch im Detail vorgestellt, wobei auch auf

die jeweiligen Rahmenbedingungen eingegangen wird, unter denen die benann-

ten Schwellwerte Gültigkeit besitzen (z.B. die Beschaffenheit des Terrains bei An-

gaben zur minimal erforderlichen Schneehöhe). 

Fundstelle Wert Fundstelle Wert

Chin et al. 2018, S. 45 ≤ -2°C Steiger 2011, S. 686 ≤ -5°C

Schmidt 2015, S. 35 ≤ -2°C Scott et al. 2015, S. 918 ≤ -5°C

de Jong et al. 2012, S. 3 ≤ -3°C Dawson & Scott 2013, S. 247 ≤ -5°C

Schönthaler et al. 2015, S. 199 ≤ -3°C Pinnow 2014, S. 27 ≤ -5°C

Müller et al. 2013, S. 3 ≤ -4°C Lintzen 2013, S. 18 ≤ -5°C

Tabelle 3: Schwellwerte für den Parameter Lufttemperatur.

Fundstelle Wert Fundstelle Wert

Pinnow 2014, S. 27 ≤ 65% Lintzen 2013, S. 18 ≤ 80%

Tabelle 4: Schwellwerte für den Parameter Luftfeuchtigkeit.
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Fundstelle Wert Fundstelle Wert

Noguera 2018, S. 4 ≤ -2°C Schneider 2014, S. 10 ≤ -3°C

Damm et al. 2014, S. 9 ≤ -2°C Graber 2017, S. 1 ≤ -5°C

Benoit 2012, S. 35 ≤ -3°C Schneider 2014, S. 43 ≤ -5°C

Olefs et al. 2010, S. 1100 ≤ -3°C Demiroglu et al. 2015, S. 5 ≤ -7°C

Tabelle 5: Schwellwerte für den Parameter Feuchttemperatur.

Fundstelle Wert Fundstelle Wert

Foken & Lüers 2015, S. 36 ≥ 30 cm Becken 2010, S. 6 ≥ 30 cm

Scott et al. 2015, S. 918 ≥ 30 cm Schneider 2014, S. 13 ≥ 30 cm

Demiroglu et al. 2015, S. 103 ≥ 30 cm Bark et al. 2010, S. 469 ≥ 30 cm

Müller et al. 2013, S. 1 ≥ 30 cm

Tabelle 6: Schwellwerte für den Parameter Schneehöhe (Ski-Alpin).

Fundstelle Wert Fundstelle Wert

Bark et al. 2010, S. 469 ≥ 10 cm Foken & Lüers 2015, S. 36 ≥ 15 cm

Tabelle 7: Schwellwerte für den Parameter Schneehöhe (Ski-Langlauf).

Alle acht eingangs benannten Parameter wurden in das quantitative Analysemo-

dell aufgenommen, welches die Basis des zu konzipierenden DSS bildet. Das

Modell wurde insofern flexibel gehalten, als dass die zugehörigen Grenzwerte frei

modifiziert werden können und auch eine Erweiterung um zusätzliche Parameter

möglich ist. Eine Anpassung an die speziellen mikroklimatischen Rahmenbedin-

gungen betrachteter Standorte sowie an zukünftige technische Entwicklungen bei

der Schneeproduktion, ist daher ohne großen Aufwand darstellbar. 

Da sich die Feuchttemperatur – wie in Abschnitt 3.3 dargestellt – aus Lufttempe-

ratur und Luftfeuchtigkeit errechnen lässt, finden die Schwellwerte für beide Para-

meter (die ja wiederum von der Ausprägung des jeweils anderen Parameters ab-

hängig sind) keinen Eingang in das Modell. Dieses wird dadurch von den stand-

ortspezifischen Aussagen der in den Tabellen 3 und 4 aufgeführten Publikationen

entkoppelt. Die in das Modell übernommene Kombination aus Feuchttemperatur,

Schneehöhe und der Identifikation disruptiver Einflüsse durch Wind, Regen und

Wärme, zeichnet sich damit durch größtmögliche Standortunabhängigkeit aus.
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Feuchttemperatur

Es wird davon ausgegangen, dass die Herstellung von qualitativ hochwertigem

Kunstschnee (ohne die Beifügung von Zusätzen wie SNOMAX) nur dann möglich

ist, wenn die Feuchttemperatur maximal -3°C beträgt. Da sowohl die Lufttempe-

ratur als auch die Luftfeuchtigkeit (anhand der in Kapitel 3 dargestellten Formel)

in die Berechnung der Feuchttemperatur einfließen, wird die Luftfeuchtigkeit  –

obwohl in der Literatur häufig genannt und von essentieller Bedeutung für die Be-

schneibarkeit – nicht separat in das Analysemodell aufgenommen, sondern geht

indirekt über die Feuchttemperatur in dieses ein. Die Lufttemperatur wird dage-

gen als separater Parameter für die Bestimmung disruptiver Phasen benötigt. Die

Feuchttemperatur wird in °C erfasst und kann – je nach Umfang der verfügbaren

Daten – als Stunden-, Tages-, Wochen- oder Monatsmittelwert vorliegen. Ihre Be-

rechnung ist sowohl auf Basis realer Wetterdaten als auch auf Basis von Progno-

sedaten aus regionalen Klimamodellen (siehe hierzu Kapitel 6) möglich.

Niederschlagsmenge

Die Niederschlagsmenge – üblicherweise erfasst als Tagessumme in mm oder

als durchschnittliche Tagessumme in mm pro Woche oder Monat – ist aus zwei

Gründen von Bedeutung: Zum einen lässt sich anhand der Niederschlagsmenge

in Verbindung mit der Lufttemperatur ermitteln, an welchen Tagen es zu natürli-

chem Schneefall kommt. Zum anderen ist davon auszugehen, dass ein bei positi-

ven Temperaturen als Regen fallender Niederschlag von mehr als 20 mm pro Tag

und über einen Zeitraum von zwei Tagen hinaus als ein für den Pistenbetrieb dis-

ruptives Ereignis gewertet werden muss, da anhaltender Regen in diesem Um-

fang nicht nur zur Einstellung des Skibetriebs führt, sondern auch die Pistenober-

fläche erheblich in Mitleidenschaft zieht (vgl. Becken 2010, S. 6; Scott et al. 2015,

S. 918). Wie eine von Steiger im Jahr 2015 durchgeführte Erhebung unter 2.400

Skifahrerinnen in Deutschland, Österreich und der Schweiz zeigt, ist das Auftre-

ten von Regen noch vor Wind, Nebel und anderen Wetterproblemen der meistge-

nannte Grund für den Abbruch von Ski-Aktivitäten (vgl. Demiroglu et al. 2015, S.

53). Angaben zur Niederschlagsmenge können in Form realer Wetterdaten sowie

in Form von Prognosedaten aus regionalen Klimamodellen vorliegen.
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Lufttemperatur

Die Lufttemperatur (in °C) wird nicht nur für die Bestimmung der Feuchttempera-

tur sowie für die Identifikation disruptiver Niederschlagsphasen benötigt, sie zeigt

darüber hinaus auch disruptive Wärmephasen an: Liegt sie an mehr als zwei Ta-

gen in Folge bei mehr als 10°C, so ist von einem teilweisen Anschmelzen der

Pistenoberfläche mit negativen Folgen für den Skibetrieb auszugehen (vgl. Scott

et al. 2015, S. 918;  Becken 2010, S. 6). Auch dieser Parameter kann stunden-,

tages- wochen- und monatsweise erfasst bzw. gemittelt und mit realen Wetterda-

ten sowie mit Prognosedaten aus regionalen Klimamodellen unterlegt werden.

Windgeschwindigkeit

Die Windgeschwindigkeit ist für die Bestimmung der Beschneibarkeit von Bedeu-

tung, da bei „zu starkem Wind“ das Wasser-Druckluft-Gemisch so stark verweht

wird, dass ein Großteil des Kunstschnees verloren geht. Da sich in der Literatur

überraschenderweise keine konkreten Angaben zu der Frage finden ließen, ab

wann Wind als „zu stark“ für die Beschneiung zu werten ist, wurde nachfolgend

von phänomenologischen Kriterien ausgegangen und angenommen, dass eine

Windstärke ab 11,32 m/s bzw. ab Stufe 6 der Beaufort-Skala28 („starker Wind“,

der u.a. dicke Äste bewegen kann) als prohibitiv zu betrachten ist.

Gleiches gilt für die Frage, ab welcher Windstärke der Pisten- bzw. Seilbahnbe-

trieb im Sinne einer disruptiven Periode vollständig eingestellt werden müsste. Zu

diesem Parameter ließen sich in der Literatur ebenfalls keine konkreten Angaben

finden, auch wenn Autorinnen wie etwa Becken 2010 (S. 6) berichten, dass hohe

Windstärken in Ländern wie Finnland den Hauptgrund für die außerplanmäßige

Schließung von Skipisten darstellen. Für das im Rahmen dieser Arbeit entwickel-

te Modell wird nachfolgend davon ausgegangen, dass dies bei einer Windstärke

ab 21,09 m/s bzw. ab Stufe 9 auf der Beaufort-Skala (ein „Sturm“, der u.a. Äste

abbrechen und Dächer  abdecken kann) der Fall  ist.  Die Windgeschwindigkeit

wird üblicherweise in m/s erfasst und kann – wie alle zuvor betrachteten Parame-

ter – stunden-, tages-, wochen- und monatsweise sowohl in Form realer Wetter-

daten als auch in Form von Prognosedaten aus Klimamodellen vorliegen.

28 Die nach dem britischen Hydrologen Francis Beaufort (1774 – 1857) benannte Skala

dient der Charakterisierung der Windstärke.
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Schneehöhe

Liegen Daten zur Decke der Schneehöhe (in cm) vor, so können diese für die

Feststellung genutzt werden, an welchen Tagen Alpin-Ski oder andere Winter-

sportaktivitäten nur auf Basis von Naturschnee angeboten werden könnten. Für

das im Rahmen dieser Arbeit konzipierte DSS wird davon ausgegangen, dass für

Alpin-Ski mindestens eine Naturschneedecke von 30 cm sowie für andere Aktivi-

täten wie Ski-Langlauf, Winterschuhwandern oder Snowbiking mindestens eine

Naturschneedecke von 10 cm vorhanden sein sollte. Auf Basis dieser Überlegun-

gen lässt sich darüber hinaus die Zahl der Tage ermitteln, an denen eine Ergän-

zung des Naturschneeangebots durch künstliche Beschneiung für die Aufrechter-

haltung  bestimmter  Wintersportaktivitäten  erforderlich  wäre.  Die  Höhe  der

Schneedecke kann zudem – im Zusammenspiel mit den Feuchttemperaturen –

dazu genutzt werden, die Auswirkungen disruptiver Perioden auf den Pistenbe-

trieb zu bestimmten: Liegt zum Zeitpunkt des Auftretens einer solchen Periode

kein Naturschnee und waren auch die Feuchttemperaturen der vorangegange-

nen drei Wochen zu warm für eine künstliche Beschneiung, so richtet die disrupti-

ve Phase keinen Schaden an und ist somit nicht als solche zu werten.

Saisonlänge

Zur Eingrenzung der Wintersaison finden sich in der Literatur verschiedene Anga-

ben. Während sie im Zusammenhang mit der in Kapitel 3 vorgestellten 100-Tage-

Regel häufig als vom 01. Dezember bis zum 15. April laufend definiert wird (und

somit der „Easter Shift“ bereits Berücksichtigung findet, siehe z.B. Matzarakis et

al. 2012, S. 646), bedienen andere Autorinnen und Autoren die traditionelle Ein-

grenzung vom 01. November bis zum 31. März (siehe z.B. Müller et al. 2013, S.

3) oder überlassen sie in Abhängigkeit von lokalen Gegebenheiten dem Anwen-

der selbst (siehe z.B. Abegg 2012, S. 29 oder Usinger 2015, S. 16). In Bark et al.

2010 (S. 469) wird zudem darauf hingewiesen, dass die klassische europäische

Wintersportsaison für Ressorts außerhalb Europas teilweise von untergeordneter

ökonomischer  Bedeutung ist  –  so spielen etwa für  US-Skigebiete der „Spring

Break“ und Thanksgiving eine bedeutsamere Rolle. Für das im Rahmen dieser

Arbeit zu entwickelnde Modell wurde von der traditionellen Eingrenzung und da-

mit von einer Saison ausgegangen, die zwischen dem 01. November und dem
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31. März stattfindet und die somit – je nachdem, ob es sich beim Folgejahr um

ein Schaltjahr oder ein Nichtschaltjahr handelt – 151 oder 152 Tage umfasst. 

7.3 Ausgestaltung des DSS

7.3.1 Qualitative Betrachtung

Um die qualitative Standortbetrachtung angesichts der Komplexität des in Kapitel

7.3.2 vorgestellten quantitativen Modells nicht unnötig zu verkomplizieren, wer-

den die Ausprägungen der in Kapitel 7.2.1 identifizierten Faktoren auf einer vier-

stufigen Skala anhand kurzer Schilderungen repräsentiert, die sich konzeptionell

an den User Stories der Softwareentwicklung orientieren – die also einen Sach-

verhalt formlos, umgangssprachlich und möglichst prägnant zusammenfassen.

Positiv wirkende Faktoren

Lage - Höhe

O 1 Das Projektionsgebiet liegt überwiegend unterhalb von 1.500 m ü.NN.

O 2
Das Projektionsgebiet liegt überwiegend oberhalb von 1.500 m ü.NN,
zu großen Teilen aber auch noch unterhalb von 2.000 m ü.NN.

O 3
Das Projektionsgebiet liegt überwiegend oberhalb von 2.000 m ü.NN,
zu großen Teilen aber auch noch unterhalb von 3.000 m ü.NN.

O 4 Das Projektionsgebiet liegt überwiegend oberhalb von 3.000 m ü.NN.

Lage - Pistenausrichtung

O 1 Alle Pisten im Projektionsgebiet befinden sich an Nordhängen. 

O 2
Der überwiegende Teil der Pisten im Projektionsgebiet 
befindet sich an Nordhängen.

O 3
Der überwiegende Teil der Pisten im Projektionsgebiet 
befindet sich nicht an Nordhängen.

O 4 Keine der Pisten im Projektionsgebiet befindet sich an einem Nordhang.

Wasserverfügbarkeit

O 1
In der Nähe des Projektionsgebietes befinden sich keine Fließ- oder 
Standgewässer, aus denen ausreichende Mengen an Wasser für die
Beschneiung entnommen werden könnten.

O 2

In der Nähe des Projektionsgebietes befinden sich zwar Fließ- oder Stand-
gewässer, die für die Entnahme geeignet wären, diese führen aber nicht 
ganzjährig ausreichend Wasser oder es sprechen andere Gründe (z.B. 
das Vorhandensein geschützter Arten) gegen eine Wasserentnahme.

O 3
In der Nähe des Projektionsgebietes befindet sich ein wasserreiches 
Fließ- oder Standgewässer, aus dem ausreichende Mengen an 
Wasser für die Beschneiung entnommen werden können.

O 4
In der Nähe des Projektionsgebietes befinden sich mehrere 
wasserreiche Fließ- oder Standgewässer, aus denen ausreichende 
Mengen an Wasser für die Beschneiung entnommen werden können.
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Alternativangebote

O 1
Am Standort existieren keinerlei etablierte und schneeunabhängige
Angebote, die für den Fall der Nichtbeschneibarkeit von der Zielgruppe
der Wintersportler als akzeptable Alternativen angenommen werden.

O 2

Am Standort existieren schneeunabhängige Angebote, die für den Fall der 
Nichtbeschneibarkeit von der Zielgruppe der Wintersportler als Alternativen 
angenommen werden. Diese sind jedoch weder etabliert noch gelten sie bei 
einem Großteil der Zielgruppe als besonders attraktive Alternativen.

O 3
Am Standort existieren einige wenige etablierte und schneeunabhängige
Angebote, die für den Fall der Nichtbeschneibarkeit von der Zielgruppe 
der Wintersportler als akzeptable Alternativen angenommen werden.

O 4
Am Standort existiert eine Vielzahl etablierter und schneeunabhängiger
Angebote, die für den Fall der Nichtbeschneibarkeit von der Zielgruppe 
der Wintersportler als akzeptable Alternativen angenommen werden.

Bekanntheitsgrad

O 1 Der Standort ist touristisch noch gar nicht oder kaum erschlossen.

O 2 Der Standort ist touristisch erschlossen, jedoch nicht als Wintersportstandort.

O 3 Der Standort ist als Wintersportstandort erschlossen, ist aber eher unbekannt.

O 4 Der Standort ist als Wintersportstandort erschlossen und als solcher bekannt.

Negativ wirkende Faktoren

Schutzgebietsnähe

O 1
Das Projektionsgebiet grenzt unmittelbar an ein Schutzgebiet oder an mehrere 
Schutzgebiete mit hohem Schutzstatus (z.B. Nationalpark, Naturmonument) an.

O 2

Das Projektionsgebiet grenzt entweder unmittelbar an ein oder mehrere 
Schutzgebiete mit niedrigem Schutzstatus (z.B. Landschaftsschutzgebiet) 
an oder aber es befindet sich in der näheren Umgebung eines oder mehrerer 
Schutzgebiete mit hohem Schutzstatus (z.B. Nationalpark, Naturmonument).

O 3
Das Projektionsgebiet befindet sich in der näheren Umgebung 
eines oder mehrerer Schutzgebiete mit niedrigem Schutzstatus.

O 4
Weder in der unmittelbaren noch in der näheren Umgebung des 
Projektionsgebiets befinden sich Schutzgebiete gleich welcher Art.

Mangelnde Akzeptanz

O 1

Die Projektierung wird durch zahlreiche lokale zivilgesellschaftliche oder
politische Akteure in Frage gestellt, die dabei wesentliche Unterstützung aus 
übergeordneten Strukturen (z.B. Bundes- und Landesverbände der jeweils 
vor Ort involvierten politischen Parteien oder Umweltverbände) erfahren.

O 2
Die Projektierung wird durch zahlreiche lokale zivilgesellschaftliche oder
politische Akteure in Frage gestellt, die dabei aber nur unwesentliche 
Unterstützung aus übergeordneten Strukturen erfahren.

O 3
Die Projektierung wird durch einige lokale lokale zivilgesellschaftliche 
oder politische Akteure in Frage gestellt, die dabei aber keinerlei 
Unterstützung aus übergeordneten Strukturen erfahren.

O 4
Die Projektierung wird von keinem kommunalpolitischen oder 
zivilgesellschaftlichen Stakeholder grundsätzlich in Frage gestellt.
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7.3.2 Quantitative Analyse

Für eine Anwendung des in Abschnitt 7.2.2. dargestellten Modells auf Tagesbasis

werden Angaben zu folgenden Parametern benötigt:

• Lufttemperatur (Tagesmittel, in °C)

• Luftfeuchtigkeit (Tagesmittel, in %)

• Schneedecke (Tagesmittel, in cm)

• Windgeschwindigkeit (Tagesmittel, in m/s)

• Niederschlagsmenge (Tagesmenge, in mm)

Liegen Daten zu allen Parametern vor, werden folgende Schritte durchlaufen:

(1) Auf Basis von Lufttemperatur und Luftfeuchtigkeit erfolgt eine näherungs-

weise Berechnung der Feuchttemperatur. Liegt diese höchstens bei – 3°C

und liegt die Windgeschwindigkeit zudem unter 11,32 m/s, kann – vorbe-

haltlich der Verfügbarkeit von Wasser – künstlich beschneit werden.

(2) Anhand von Lufttemperatur, Windgeschwindigkeit und Niederschlag wer-

den potentielle disruptive Phasen identifiziert (länger als zwei Tage dau-

ernde Perioden mit einer Lufttemperatur von mehr als 10°C oder mehr als

20 mm täglichem Niederschlag in Form von Regen sowie jeder Tag mit

Windgeschwindigkeiten oberhalb von 21,09 m/s). Um die Auswirkungen

disruptiver Perioden auf den Pistenbetrieb nicht zu überschätzen, werden

diese nur dann als solche gewertet, wenn zum Zeitpunkt ihres Eintretens

entweder Naturschnee lag oder in den drei Wochen vor dem Zeitpunkt

ihres Eintretens eine künstliche Beschneiung möglich gewesen wäre.

(3) Anhand von Lufttemperatur und Niederschlag wird zudem die Anzahl von

Tagen identifiziert,  an denen auf natürliche Weise Schnee (unabhängig

von der konkreten Menge oder der sich daraus ergebenden Schneehöhe)

gefallen wäre (negative Temperatur, positiver Niederschlag).

(4) Anhand der Höhe der Schneedecke lässt sich die Anzahl von Tagen iden-

tifizieren, an denen nur mit Naturschnee Ski-Alpin (ab 30 cm Höhe) oder

andere Wintersportaktivitäten (ab 10 cm Höhe) angeboten werden könn-

ten. Darüber hinaus lässt sich über die Gegenüberstellung von Tagen, an

denen eine technische Beschneiung möglich gewesen wäre, und Tagen,

an denen eine zu niedrige natürliche Schneedecke vorherrscht, die An-
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zahl von Tagen bestimmen, an denen eine Beschneiung möglich und zu-

gleich auch erforderlich gewesen wäre. Aufgrund der Tatsache, dass die

Möglichkeit des Lagerns und späteren Ausbringens von vorab produzier-

tem Schnee sowie die Dauer der Nutzung von Kunstschnee auf einer Pis-

te nicht im Modell abgebildet werden können, ist allerdings mit einer deut-

lichen Überschätzung der Anzahl an Tagen zu rechnen, an denen eine

Beschneiung erforderlich gewesen wäre – insofern handelt es sich hier le-

diglich um eine interessehalber berechnete Zusatzgröße.

(5) Die ermittelten Werte gestatten eine Reihe von weiteren Berechnungen

(etwa zur Einhaltung der 100-Tage-Regel oder des Weihnachtsindikators).

Es ergeben sich durch die Anwendung somit folgende Kenngrößen, auf deren

Basis qualifizierte Aussagen über die gegenwärtigen und zukünftigen Möglichkei-

ten künstlicher Beschneiung an einem Standort möglich sind:

• Anzahl und Anteil der Tage (an der Saison), an denen Naturschnee fällt.

• Anzahl und Anteil der Tage, an denen nur auf Basis von Naturschnee das

Anbieten von Ski-Alpin oder anderen Wintersportaktivitäten möglich wäre.

• Anzahl und Anteil der Tage, an denen künstlich beschneit werden könnte.

• Anzahl, Verteilung und Länge disruptiver Perioden, in denen durch Wär-

me oder Starkregen Schäden an den Pistenoberflächen erzeugt werden

oder in denen aufgrund hoher Windstärken kein Pistenbetrieb möglich ist.

• Anzahl der Saisons, in denen die 100-Tage-Regel sowie der Weihnachts-

indikator vollständig oder mindestens zu 50% auf Basis des verfügbaren

Naturschnees eingehalten werden könnten.

Eine erste Umsetzung des Modells erfolgte unter Einsatz der freien Tabellenkal-

kulation LibreOffice Calc29, eine Beispieltabelle mit Daten aus der in Kapitel 8 be-

trachteten Region findet sich in Anhang 2, wobei zu niedrige Schneehöhen rot,

für die Beschneiung geeignete Feuchttemperaturen grün und Tage gelb markiert

sind, die potentiell einer disruptiven Periode zuzurechnen sind. Die verwendete

Software, die Tabellenvorlage sowie alle für die Auswertungen im nachfolgenden

Kapitel erstellten Saisontabellen finden sich im digitalen Anhang dieser Arbeit.

29 https://www.libreoffice.org/discover/calc/
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8. Anwendung des DSS am Beispiel des Harzes

8.1 Kurzvorstellung des Skigebiets

8.1.1 Topologie und Topographie

Der Landkreis Harz, entstanden im Jahr 2007 im Rahmen einer Kreisgebietsre-

form aus den drei Landkreisen Wernigerode, Halberstadt und Quedlinburg sowie

der Stadt Falkenstein, befindet sich im Südwesten Sachsen-Anhalts und umfasst

120 Ortschaften, die in 13 Einheitsgemeinden und einer Verbandsgemeinde or-

ganisiert sind. Der Landkreis mit 223.000 Einwohnern ist stark durch Landwirt-

schaft (51,8% der Fläche) und Naturräume (36,8% der Fläche) geprägt. Allein

247 km² des Kreisgebiets gehören zur Fläche des anteilig in Sachsen-Anhalt und

Niedersachsen liegenden Nationalparks Harz (vgl. Schulze et al. 2014, S. 7).

Die Topologie der für die weitere Betrachtung relevanten Gegend um Wernigero-

de wird primär durch das Berg- und Hügelland des Harzes bestimmt (vgl. Brauns

& Offinger 2002, S. 74; Brandt 2006, S. 73). Der Harz ist ein 30 km breites und

90 km langes Mittelgebirge mit Ursprung im Mesozoikum, das als eigenständige

naturräumliche Großregion gilt. Die höchste Erhebung ist der 1.141 m hohe Bro-

cken, der sich seit der Eingemeindung der Ortschaft Schierke in die Stadt Werni-

gerode im Jahr 2009 auf Wernigeröder Stadtgebiet befindet.

Der Klimawandel macht sich im Harz bereits bemerkbar: Die Jahresmitteltempe-

ratur auf dem Brocken (wo sich seit 1848 eine Wetterstation befindet) ist bis 2014

von 1,5°C um rund 2,5°C auf über 4,0°C gestiegen (siehe Abbildung 7). Während

die Temperatur im Jahresmittel seit Beginn der Aufzeichnungen und dem Ende

des Zweiten Weltkriegs – für 1944 bis 1950 fehlen kriegsbedingt Messdaten – in

über 100 Jahren nur in einem Jahr oberhalb von 4,0°C lag, wurde diese Schwelle

zwischen 1950 und 2014 bereits in 13 Jahren überschritten. Von diesen 13 be-

sonders warmen Jahren fallen wiederum 11 in den Zeitraum seit 1980. Die bis-

lang höchste Temperatur wurde im August 2012 mit 29°C gemessen – und 2014

lag die Durchschnittstemperatur mit 5,1°C erstmals oberhalb von 5,0°C.30

30 Siehe hierzu auch die Ausführungen des Autors unter: 

http://www.scienceblogs.de /2015/01/18/2014-das-waermste-

jahr-auf-dem-brocken-seit-beginn-der-aufzeichnungen/
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8.1.2 Wintersport im Harz

Der Harz kann auf eine lange Wintersporttradition verweisen, deren Ausgang sich

auf das Wirken des Försters Arthur Ulrichs (1838 – 1927) zurückführen lässt, der

u.a. 1892 den ersten Harzer Ski-Club mitbegründete. In den 1920er und 1930er

Jahren waren insbesondere Braunlage, Sankt Andreasberg und Schierke Winter-

sportorte von internationaler Bekanntheit (vgl. Knolle & Reinboth 2014). Heute gilt

der Tourismus als der mit bedeutendem Abstand wichtigste Wirtschaftszweig der

Region (vgl. Pinnow 2014, S. 1). Für den internationalen Wintersport ist der Harz

– wie auch einige andere europäische Mittelgebirge – von überregionaler Bedeu-

tung. Zwar sind die klimatischen wie auch die wirtschaftlichen Rahmenbedingun-

gen für einen profitablen Skibetrieb hier deutlich schlechter ausgeprägt als etwa

in vielen alpinen Wintersportorten – dafür ist der Harz aus zahlreichen norddeut-

schen Großstädten und Ballungsräumen für Tagesausflügler, Wochenendurlau-

ber und Schulklassen gut erreichbar und hat somit eine für den Wintersportmarkt

bedeutende Stützfunktion: Hier werden Anfängerinnen an den Wintersport heran-

geführt,  während erfahrene Wintersportlerinnen auf  Kurzausflügen im Training

bleiben und den Kontakt zur Sportart nicht verlieren. Demiroglu 2016 bezeichnet
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derartige Mittelgebirgs-Skigebiete daher als „für das Überleben des heimischen

sowie sogar des alpinen Wintersportmarkts dringend erforderlich“ (S. 17).

Die natürlichen Rahmenbedingungen für Wintersportangebote im Harz sind eher

ungünstig. So gilt  der Harz zwar als eines der am wenigsten klimavulnerablen

Mittelgebirge (vgl. Pinnow 2014, S. 18) und verfügt zudem über ein feuchtes und

kühles Klima und viele natürliche Wasserkörper, so dass das Vorhandensein von

Wasser hier – im Gegensatz zu anderen Regionen (vgl.  Lang & Lang 2009, S.

13) – nicht als limitierender Faktor zu werten ist. Auf der anderen Seite sind die

klimatischen Bedingungen für eine Beschneiung eher ungünstig: Die höchste Er-

hebung endet bei 1.141 m ü.NN, eine „Flucht nach oben“ ist damit nicht möglich

und die Luftfeuchtigkeit liegt während des Winters nahezu konstant oberhalb von

85%31, was die Möglichkeiten für eine Beschneiung erheblich einschränkt (siehe

Kapitel 7.2.2). Hinzu kommt, dass weite Teile der Region im Nationalpark Harz

oder in anderen rechtlich geschützten Naturräumen (u.a. existieren ein EU-Vogel-

schutzgebiet und ein Landschaftsschutzgebiet) liegen, die Auflagen für großflä-

chige Eingriffe in die natürliche Umwelt also vergleichsweise umfassend sind.

Angesichts der klimatischen Entwicklung wird die zukünftige Eignung des Harzes

als Wintersportgebiet u.a. von Gebhardt et al. 2011 (S. 86), Franck & Peithmann

(S. 10), Enke 2010 (S. 105) und Pinnow 2014 (S. 14) bezweifelt.

8.1.3 Wurmberg und Winterberg

Um das im Rahmen dieser Arbeit zu entwickelnde DSS an einer Skiregion testen

zu können, wird das Projekt „Natürlich.Schierke“ als Beispiel herangezogen. Hier-

bei handelt es sich um ein sich gegenwärtig in Planung befindliches und baulich

noch nicht realisiertes Skigebiet, welches am Kleinen Winterberg (837,0 m ü.NN)

des zu Wernigerode in Sachsen-Anhalt gehörenden Ortsteils Schierke – einem

der bekannteren Ausflugsorte im Harz mit langer, nach 1950 jedoch unterbroche-

ner Tradition als Wintersportort – entstehen soll.

Das Planungsgebiet liegt in unmittelbarer Nähe des derzeit größten Skigebiets im

Harz am Wurmberg (971,2 m ü.NN) im niedersächsischen Braunlage.  Dieses

ebenfalls traditionsreiche Wintersportgebiet wurde zwischen 2012 und 2013 mas-

siv ausgebaut und für ca. 13 Millionen Euro an privaten wie öffentlichen Investiti-

31 Die durchschnittliche relative Luftfeuchtigkeit im Harz liegt laut 

DWD bei 84% (siehe http://www.norddeutscher-klimamonitor.de).
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onen mit einer modernen Kunstschneeinfrastruktur ausgestattet, wobei unter an-

derem 16 ha Wald für neue Pisten gefällt und ein 80.000 m³ fassendes Speicher-

becken errichtet wurden. Auch wenn die im Wirtschaftlichkeitsgutachten prognos-

tizierten 138 durchschnittlichen Betriebstage pro Saison seit Inbetriebnahme der

Beschneiung im Jahr 2013 bisher noch in keinem Jahr erreicht werden konnten32,

gilt das Projekt als wirtschaftlicher wie auch politischer Erfolg, an den in der weni-

ger als 20 km entfernten Nationalparkgemeinde Schierke angeknüpft werden soll.

Hier soll in den kommenden Jahren am Kleinen Winterberg ein weiteres künstlich

beschneites und unmittelbar mit dem Wurmberg verbundenes Skiareal geschaf-

fen werden. Die seit  der Wende stark (auf unter 400 Personen) geschrumpfte

Gemeinde galt in der ersten Hälfte des 20. Jahrhunderts als Wintersportort mit

überregionaler Bedeutung und bewarb sich 1936 um die Austragung der Olympi-

schen Winterspiele. Zu Hochzeiten verfügte Schierke über eine Skiabfahrt am

Großen Winterberg (heute für die wirtschaftliche Entwicklung unerreichbarer Teil

des Nationalparks Harz), mehrere Skisprungschanzen und eine Bobbahn. Als Ort

in direkter Grenznähe wurde Schierke nach 1950 schwerer zugänglich, blieb aber

ein in der DDR bekannter Urlaubsort. Im Jahr 2009 wurde Schierke im Zuge ei-

ner Gebietsreform nach Wernigerode eingemeindet, ein Jahr später beschloss

der Wernigeröder Stadtrat ein Ortsentwicklungskonzept, mit welchem die „Wie-

dererweckung“ Schierkes als Wintersportort angestrebt wird. 

Dieses Konzept befindet sich derzeit unter dem Titel „Natürlich.Schierke“ in der

Umsetzung,  wobei  zunächst  grundlegende infrastrukturelle  Maßnahmen durch

die öffentliche Hand finanziert  und umgesetzt  wurden.  So wurden 8 Millionen

Euro in die Ertüchtigung der Sandbrinkstraße zum geplanten Standort für die Tal-

station der Seilbahn investiert, weitere 13 Millionen Euro in ein Parkhaus mit 715

Stellplätzen am gleichen Standort sowie 9 Millionen Euro in ein Kunsteisstadion

in unmittelbarer Nähe. Zum Zeitpunkt der Entstehung dieser Arbeit ist die Tras-

senplanung der Seilbahn Gegenstand eines beim Ministerium für Landesentwick-

lung und Verkehr angesiedelten Raumordnungsverfahrens, welches noch in die-

sem Jahr abgeschlossen werden soll. Für die Seilbahn sowie für eine Abfahrts-

piste von etwa 2,5 km Länge sollen rund 20 ha Wald gerodet und ein aus dem

Harzer Gebirgsfluss Kalte Bode gespeistes Speicherbecken angelegt werden.

32 2013/2014: 30 Tage; 2014/2015: 105 Tage; 2015/2016: 60 Tage
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8.2 Bestimmung der Parameter

8.2.1 Qualitative Betrachtung

Zu den im Rahmen der qualitativen Analyse zu bewertenden Faktoren können im

Hinblick auf das Skigebiet am Winterberg folgende Aussagen getroffen werden:

• Lage – Höhe  : Die geplante Piste beginnt auf etwa 830 m ü.NN und endet

auf etwa 625 m ü.NN.

• Lage – Pistenausrichtung  : Die geplante Piste hat eine westliche bis süd-

westliche Ausrichtung.

• Wasserverfügbarkeit  : Der Harz ist äußerst feucht und wasserreich. Mit der

Kalten Bode existiert ein für die Wasserentnahme grundsätzlich geeigne-

tes Fließgewässer. Vor dem Hintergrund des Klimawandels ist damit zu

rechnen, dass die Niederschlagsmenge im Planungsgebiet im Jahresmit-

tel sogar noch zunehmen wird (vgl. Pinnow 2014, S. 8).

• Alternativangebote  : Als stark touristisch ausgerichtete Region verfügt das

Planungsgebiet über eine ganze Reihe von schneeunabhängigen und po-

pulären Alternativangeboten, wie etwa Wanderungen durch den National-

park Harz, Fahrten mit der Harzer Schmalspurbahn (HSB) zum Brocken

oder Besuche in zahlreichen Kulturstätten.

• Bekanntheit  : Das Planungsgebiet ist eine seit über 100 Jahren etablierte

und bundesweit bekannte Urlaubs- und Wintersportregion.

• Schutzgebietsnähe  : Das Planungsgebiet grenzt unmittelbar an den Natio-

nalpark Harz (höchste Schutzstufe) sowie an das EU-Vogelschutzgebiet

Hochharz und das Landschaftsschutzgebiet Harz. Es finden sich hier zu-

dem Tier- und Pflanzenarten, die auf der Roten Liste verzeichnet sind.

• Mangelnde Akzeptanz  : Das Projekt wird durch die lokalen Verbände von

BUND und NABU sowie deren nationale Vereinigungen scharf  kritisiert

und war bereits mehrfach Gegenstand von Widersprüchen und Klagean-

drohungen. Mit den Grünen und den Linken zweifeln mindestens zwei der

im Stadtrat vertretenen Kommunalparteien sowie deren Landesverbände

die Umsetzbarkeit des Vorhabens an.
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8.2.2 Quantitative Analyse

Die für die quantitative Analyse benötigten Daten konnten dem ReKIS33 entnom-

men werden – dem gemeinsamen Regionalen KlimaInformationsSystem der drei

Bundesländer Sachsen, Sachsen-Anhalt und Thüringen, das seit 2012 durch den

Lehrstuhl für Meteorologie der TU Dresden betrieben und dort aktuell in der Ver-

sion 3.1.22 vom 11.04.2018 gehostet wird. Das ReKIS bietet den freien Zugriff

auf historische Daten von Wetterstationen in allen drei Bundesländern aus den

Jahren 1950 bis 2017 sowie auf bis in das Jahr 2100 reichende Simulationsdaten

aus verschiedenen Klimamodellen.

Eine der in ReKIS erfassten Wetterstationen des DWD (Nr. 4445 bei den Koordi-

naten 51.7656; 10.6536 sowie auf 609 m ü.NN.) befindet sich im Wernigeröder

Ortsteil Schierke in direkter Nähe (ca. 600 - 800 m, siehe Abbildung 9) des Park-

hauses Winterbergtor,  welches wiederum nahe dem Loipeneinstieg  sowie  am

Endpunkt der geplanten Skipiste sowie der geplanten Talstation der Seilbahn auf

den Winterberg liegt. Für diese Wetterstation konnten über ReKIS historische Ta-

gesdaten für die Wintersaisons von 1951/1952 bis 2016/2017 bezogen werden.

Diese Datensätze enthalten (u.a.) die Tagesmittelwerte für Lufttemperatur, Wind-

stärke,  Luftfeuchtigkeit  und Scheedeckenhöhe sowie  die  Tagesmenge für  den

Niederschlag. Mutmaßlich aufgrund technischer Defekte oder Umrüstungen an

der Station fehlen in manchen Jahren Werte – so etwa die Angaben zur Windge-

schwindigkeit für die Jahre zwischen 1951 und 1960 oder die Angaben zur Luft-

feuchtigkeit für die Jahre zwischen 1967 und 1975. Sich daraus ergebende Lü-

cken in den Datensätzen, die dazu geführt haben, dass sich einige Kennwerte

nicht für jede Saison bestimmen ließen, wurden nachfolgend kenntlich gemacht.

33 http://www.rekis.org
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Zu den über das ReKIS verfügbaren Modellen gehört auch das in Kapitel 6 kurz

vorgestellte regionale Klimamodell REMO, das u.a. in den Arbeiten von Schmidt

et al. 2010 und Endler 2010 zum Einsatz kommt. Das Modell prognostiziert Luft-

feuchtigkeit und Lufttemperatur (im Tagesmittel) und ist damit zur Bestimmung

der Feuchttemperatur geeignet. Verfügbar sind zudem Prognosedaten zu Wind-

geschwindigkeit und Niederschlagsmenge, so dass im Vergleich mit den histori-

schen Daten nur Angaben zur Höhe der Schneedecke fehlen. Unter den netzför-

mig über das Bundesgebiet verteilten „virtuellen Wetterstationen“ des REMO be-

findet sich zufällig eine Station (Nr. 104894 bei den Koordinaten 51.78; 10.65 so-

wie auf 687 ü.NN., siehe Abbildung 10) in unmittelbarer Nähe Schierkes. 

Für diese REMO-Messstation sind – bis zum Jahr 2100 – prognostische Daten

zum ebenfalls bereits in Kapitel  6 vorgestellten IPCC-Szenario A1B verfügbar,

welches einen „mittelschweren“ Verlauf des Klimawandels abbildet. Der histori-

sche Datensatz für die Saisons von 1951/1952 bis 2016/2017 konnte damit um

REMO-Daten für die Saisons von 2017/2018 bis 2099/2100 erweitert werden. Die

Zäsur zwischen historischen und REMO-Daten liegt bei allen weiteren Auswer-

tungen also zwischen den Saisons 2016/2017 und 2017/2018. Die Vergleichbar-

keit der beiden Datenreihen ist aufgrund der Standortverschiebung durchaus kri-

tisch zu hinterfragen – in dieser Hinsicht besser geeignete Prognosedaten konn-

ten jedoch im Rahmen der Modellrecherchen nicht ermittelt werden.
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Es sei darauf hingewiesen, dass in der nachfolgenden Auswertung – siehe auch

hierzu Kapitel 6 – somit neben Realdaten des DWD prognostische Daten aus ei-

nem der beiden meistverwendeten regionalen Klimamodelle sowie auf Basis des

meistgenutzten IPCC-Emissionsszenarios zum Einsatz kommen. Auch wenn die

räumliche Auflösung von REMO als für touristische Betrachtungen bisweilen als

zu grob eingeschätzt wird (vgl. Kreilkamp 2011, S. 4), dürfte die Datengrundlage

eine plausible Prognose gestatten, die weder unter den für den Wintersport best-

möglichen noch den schlechtestmöglichen Modellprämissen erfolgt.

Die tabellarische Auswertung über das in Kapitel 7 vorgestellte Schema umfasst

447 Seiten (3 Seiten für jede der 149 abgedeckten Wintersaisons) und befindet

sich in vollem Umfang im digitalen Anhang dieser Arbeit. Eine Beispieltabelle für

eine Saison mit vollständigen Daten (2006 / 2007) findet sich in Anhang B.

8.3 Vorstellung der Ergebnisse

8.3.1 Qualitative Betrachtung

Die in Kapitel  8.2.1 übersichtsartig dargestellten Rahmenbedingungen im Hin-

blick auf die zu betrachtenden qualitativen Standortfaktoren führen in einer durch

den Autor selbst vorgenommenen, ebenso subjektiven wie an dieser Stelle ledig-

lich exemplarischen Bewertung zu den umseitig dargestellten Ergebnissen. 
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Positiv wirkende Faktoren

Lage – Höhe X 1 O 2 O 3 O 4

Lage – Pistenausrichtung O 1 O 2 X 3 O 4

Wasserverfügbarkeit O 1 O 2 X 3 O 4

Alternativangebote O 1 O 2 O 3 X 4

Bekanntheitsgrad O 1 O 2 O 3 X 4

Negativ wirkende Faktoren

Schutzgebietsnähe X 1 O 2 O 3 O 4

Mangelnde Akzeptanz X 1 O 2 O 3 O 4

Im Ergebnis zeigt sich, dass das betrachtete Areal in mehrfacher Hinsicht als für

die Beschneiung geeignet betrachtet werden darf: Der Harz ist ein etabliertes Ur-

laubs- und Wintersportgebiet, das unter den Mittelgebirgen nicht nur als beson-

ders wasserreich gilt34, sondern auch mit einer Vielzahl alternativer und komple-

mentärer touristischer Angebote – insbesondere im Wander-, Natur- und Kultur-

tourismus – aufwarten kann. Aufgrund der geplanten Pistenlage darf zudem von

einer niedrigen Sonnenexposition ausgegangen werden. Gegen eine Beschnei-

ung sprechen dagegen die geringe Höhe des Planungsgebietes, dessen Nähe zu

mehreren Schutzgebieten und der nicht unwesentliche lokale Widerstand des or-

ganisierten Umweltschutzes sowie aus Teilen von Politik und Bevölkerung. 

Nimmt man an, dass die beiden Negativ-Faktoren durch eine umweltschutzkon-

forme Planung ausgeräumt werden könnten, wäre eine Empfehlung mit Blick auf

die Höhenlage insbesondere von der Betrachtung des gegenwärtigen und pro-

gnostizierten lokalen Mikroklimas abhängig zu machen – und damit vom Ergeb-

nis der nachfolgenden quantitativen Analyse.

8.3.2 Quantitative Analyse

Natürliche Schneehöhe

Für die Saisons zwischen 1951/1952 und 2016/2017 liegen Daten zur natürlichen

Schneehöhe am Standort vor, auf deren Basis sich ermessen lässt, ob die 100-

34 Eine zum Zeitpunkt der Finalisierung dieser Arbeit noch nicht im Volltext verfügbare

Studie der Harzwasserwerke gelangt zu dem abweichenden Schluss, dass auch im

Harz mit  einem erheblichen Rückgang der Wasserverfügbarkeit  gerechnet werden

muss, siehe: https://www.hildesheimer-allgemeine.de/news/article/studie-im-harz-wird

-es-immer-trockener.html
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Tage-Regel, nach der ein Standort dann profitabel ist, wenn Wintersport-Aktivitä-

ten in 7 von 10 Saisons an mindestens 100 Tagen pro Saison angeboten werden

können, für Ski-Alpin (mindestens 30 cm Schneehöhe) und sonstige Wintersport-

Aktivitäten (mindestens 10 cm Schneehöhe) erfüllt wird. Die Daten für alle Win-

tersportsaisons von 1951/1952 bis 2016/2017 finden sich tabelliert in Anhang C,

die nachfolgende Tabelle bildet die aggregierten Werte pro Dekade ab, wobei die

Einteilung in Dekaden letztendlich eine willkürliche und damit suboptimale Seg-

mentierung darstellt. Da die Daten nicht für alle Jahre vollständig vorliegen, konn-

ten nicht alle Werte für die 1950er, die 1960er und die 2010er berechnet werden.

Dekade Durchschnittliche 

Anzahl Tage mit 10 

cm Schnee und mehr 

Einhaltung der 100-

Tages-Regel unter 

dieser Bedingung

Durchschnittliche 

Anzahl Tage mit 30 

cm Schnee und mehr

Einhaltung der 100-

Tages-Regel unter 

dieser Bedingung

1950er 84 2 von 9 50 1 von 9

1960er 106 5 von 7 75 2 von 7

1970er 87 4 von 10 44 1 von 10

1980er 81 4 von 10 55 1 von 10

1990er 74 2 von 10 26 0 von 10

2000er 70 3 von 10 39 0 von 10

2010er 58 0 von 7 29 0 von 7

Tabelle 8: Einhaltung der 100-Tages-Regel zwischen 1951 und 2017. 

Betrachtet man die Dekade als – wenn auch unzulängliche – Richtgröße, wird die

100-Tage-Regel für niederschwelligen Wintersport lediglich in den 1960ern sowie

für den Alpinsport in keiner der betrachteten Dekaden erreicht, was grundsätzlich

gegen die Eignung des Standorts zu sprechen scheint.  Da Schierke zwischen

den 1950ern und den 1980ern jedoch ein durchaus anerkannter Wintersportort

gewesen ist, lohnt sich ein genauerer Blick auf die Daten. 

Wie Abbildung 11 verdeutlicht, wurden zwar die 100 Tage nur in wenigen Saisons

erreicht, für die Zeit zwischen 1950 und 1990 lässt sich jedoch – mit Ausnahme

der Datenlücke in den 1960ern – insgesamt eine hohe Anzahl von Saisons kon-

statieren, in denen die 100 Tage nur knapp verfehlt wurden. So wurden in den

1950ern in 4 von 9 Saisons an mehr als 90 Tagen Schneehöhen von 10 cm und

mehr erreicht, in den 1960ern in 5 von 7 Saisons, in den 1970ern in 5 von 10 Sai-

sons und in den 1980ern in 5 von 10 Saisons. Während dieser Wert auch in den

1990ern und in den 2000ern noch in jeweils 3 von 10 Saisons erreicht wird, über-

springt in den 2010ern nur noch eine der 7 Saisons diese Hürde. Ausgehend von
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der von Usinger 2015 (S. 9; siehe hierzu auch Kapitel 5.2) getroffenen Annahme,

dass für einen wirtschaftlich erfolgreichen Skibetrieb in Mittelgebirgen auch 60-80

Betriebstage ausreichen sollten, ist eine grundsätzliche historische Eignung des

Standorts mindestens bis in die 1980er zu konstatieren.

Auffällig ist die Zunahme an Saisons, die de facto einen „Totalausfall“ darstellen:

So wurde in der Saison 2000/2001 an nur 2 Tagen die benötigte Schneehöhe für

Alpin-Ski von mehr als 30 cm erreicht, in der Saison 2006/2007 an einem Tag, in

der Saison 2007/2008 an 10 Tagen, in der Saison 2013/2014 überhaupt nicht und

in der Saison 2015/2016 an 6 Tagen. Wie die Kennzahlen zur Beschneibarkeit

zeigen werden, hätte ein Großteil  des Wintersportgeschäfts in diesen Saisons

auch mit Beschneiung nicht gerettet werden können.

Tage mit natürlichem Schneefall

Die durch diese Entwicklung implizierte Verschlechterung der Wintersportbedin-

gungen spiegelt  sich insbesondere in der Verringerung der Anzahl  von Tagen

wieder, an denen es zu natürlichem Schneefall kommt (siehe Abbildung 12). Da

die  zur  Bestimmung der  Anzahl  an  Schneefalltagen  erforderlichen  Parameter

Lufttemperatur und Niederschlag auch im REMO-Datensatz enthalten sind, kann
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Naturschnee geeigneten Tage zwischen 1951/1952 und 2016/2017 

(Mittelwert in grün).
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die Zeitlinie – mit der markierten Zäsur in den 2010ern sowie der Datenlücke in

den 1960ern – bis zur Wintersaison 2099/2100 fortgeschrieben werden. Auch die

Detailtabellen dieser Auswertung finden sich in Anhang C dieser Arbeit.

Dekade Durchschnittliche Anzahl von 

Tagen mit natürlichem Schneefall

Dekade Durchschnittliche Anzahl von 

Tagen mit natürlichem Schneefall

1950er 35 2020er 35

1960er 55 2030er 31

1970er 61 2040er 28

1980er 59 2050er 20

1990er 51 2060er 21

2000er 43 2070er 19

2010er 34 2080er 9

2010er 39 2090er 13

Tabelle 9: Entwicklung der Schneefalltage zwischen 1951 und 2100.

Es offenbart sich über die gesamte Zeitreihe – mit Ausnahme der schneearmen

1950er – eine deutliche Abnahme der Tage mit natürlichem Schneefall, die sich

bei Betrachtung der Jahreseinzelwerte (siehe hierzu Abbildung  12) sogar noch

klarer darstellt: Während in den 2020ern noch in keiner der 10 Wintersaisons an

weniger als 20 Tagen pro Saison Naturschnee fällt, sind es in den 2040ern 3 von
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über 10 Jahre in rot, Gesamtmittel in grün).
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10 Saisons, in den 2060ern bereits 6 von 10 Saisons und in den 2080ern ganze

9 von 10 Saisons, wobei auch in der einzigen etwas schneereicheren Saison

(2082/2083) lediglich an 28 von 151 Tagen mit Schneefall zu rechnen ist.

Für die Beschneiung geeignete Tage

Dekade Durchschnittliche Anzahl von für die

künstliche Beschneiung geeigneten Tagen

Dekade Durchschnittliche Anzahl von für die

künstliche Beschneiung geeigneten Tagen

1950er 49 2020er 26

1960er 57 2030er 21

1970er 50 2040er 15

1980er 48 2050er 16

1990er 41 2060er 13

2000er 42 2070er 13

2010er 34 2080er 4

2010er 30 2090er 8

Tabelle 10: Entwicklung der Anzahl von Tagen zwischen den 1950ern und den 

2090ern, an denen eine Beschneiung möglich gewesen bzw. möglich wäre.

Ein ähnliches Bild ergibt sich bei der Betrachtung der Anzahl von Tagen, an de-

nen Feuchttemperatur und Windgeschwindigkeit eine künstliche Beschneiung er-
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an denen eine künstliche Beschneiung möglich bzw. möglich gewesen wäre (5-

Jahres-Schritte, gleitender Mittelwert über 10 Jahre in rot, Gesamtmittel in grün).
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möglichen  würden  (siehe  Abbildung  13).  Diese  brechen  nach  den  2030ern

erkennbar ein: In den 2040ern ist etwa eine künstliche Beschneiung bereits in der

Hälfte der Saisons nur noch an weniger als 10 Tagen möglich. Zwar zeigen sich

in den Folgedekaden immer wieder einzelne Saisons, in denen die Witterungs-

bedingungen die Produktion von Kunstschnee an mehr als 20 Tagen zulassen

würde, die Anzahl der „Totalausfälle“ nimmt jedoch auch hier erkennbar zu.

Entwicklung der disruptiven Perioden

Die Entwicklung der Anzahl disruptiver Perioden – ausgelöst durch Starkregen,

hohe Windgeschwindigkeiten und Wärmephasen –  entspricht  vor  dem Hinter-

grund der aufgezeigten Tendenzen sowie unter Berücksichtigung der bereits er-

wähnten Willkürlichkeit der Einteilung in Dekaden der Erwartung: Die Zahl disrup-

tiver Perioden nimmt insbesondere mit dem häufigeren Auftreten starker Nieder-

schläge und längerer Wärmephasen (windbedingte Unterbrechungen spielen im

gesamten Untersuchungszeitraum entgegen der initialen Erwartung keine Rolle)

zunächst zu, fällt dann aber parallel zum Rückgang der natürlichen Schneetage

sowie zum Rückgang der Beschneibarkeit ab, da zwar weiterhin mehr potentiell

disruptive  Perioden  auftreten,  diese  jedoch  aufgrund  der  Nichtnutzbarkeit  der

Piste keine disruptive Wirkung auf den Pistenbetrieb mehr entfalten können. Die

disruptiven  Perioden  haben  –  möglicherweise  bedingt  durch  deren  bewusst

restriktive Definition – über den gesamten Untersuchungszeitraum hinweg keinen

bedeutenden Einfluss auf das Ergebnis der quantitativen Standortanalyse.

Dekade Summe der disruptiven Perioden Dekade Summe der disruptiven Perioden

1950er 1 2020er 1

1960er 1 2030er 1

1970er 2 2040er 5

1980er 4 2050er 3

1990er 4 2060er 2

2000er 1 2070er 6

2010er 2 2080er 6

2010er 0 2090er 2

Tabelle 11: Entwicklung der Anzahl von disruptiven Perioden zwischen den 

1950ern und den 2090ern.

Version 1.0 Seite 90 von 130 26.06.2019



Christian Reinboth infernum q795269

8.4 Interpretation der Ergebnisse

8.4.1 Qualitative Bewertung

Das Ergebnis der durchgeführten qualitativen Bewertung spricht nicht per se ge-

gen die Realisation der am Winterberg geplanten Investitionen. Zwar wird deut-

lich, dass bei der Projektumsetzung erhebliche umweltrechtliche und politische

Hürden zu überwinden wären – unter der Annahme, dass dies mit einer entspre-

chend umweltverträglichen Planung gelingt, spricht jedoch lediglich die niedrige

Höhenlage und damit das Klimarisiko gegen eine Projektierung. Für die Entschei-

dung ausschlaggebend ist somit die Betrachtung des örtlichen Mikroklimas sowie

der sich daraus ergebenden Möglichkeiten für eine erfolgreiche Beschneiung im

Rahmen der im Anschluss durchgeführten quantitativen Analyse.

8.4.2 Quantitative Analyse

Die Betrachtung der für die Jahre zwischen 1951 und 2017 vorliegenden Realda-

ten zur örtlichen Witterung zeigt, dass – ohne Berücksichtigung der technischen

Möglichkeiten für eine Beschneiung – die grundlegende Eignung des Standorts

für wintertouristische Investitionen bezweifelt werden muss. Zwar wird die 100-

Tage-Regel zwischen den 1950ern und den 1980ern für den Ski-Langlauf in vie-

len Saisons erfüllt oder zumindest nur knapp verpasst, für den Alpinski sind die

Bedingungen aber bereits während dieser Zeitperiode als suboptimal zu werten.

Ab den 2000ern nimmt die Zahl der „Totalausfälle“ unter den Saisons, in denen

die Pisten auch mit künstlicher Beschneiung nur an weniger als drei Dutzend Ta-

gen hätten geöffnet werden können, erkennbar zu.

Setzt  man die  Zeitreihe mit  den standortnahen Daten der  simulierten REMO-

Messtsation unter den Rahmenbedingungen des „mittelguten“ Emissionsszenari-

os A1B fort, ergibt sich ein eindeutiges Bild: Sowohl die Anzahl an Tagen mit na-

türlichem Schneefall als auch die Anzahl an Tagen, an denen eine künstliche Be-

schneiung witterungsbedingt möglich wäre, gehen ab den 2020ern stetig zurück:

Wären in den 2030ern im saisonalen Durchschnitt noch 31 Tage mit natürlichem

Schneefall und 21 für die Beschneiung geeignete Tage zu erwarten, sinkt dieser

Wert für die 2050er auf 20 und 16 und für die 2070er auf 19 und 13 Tage. Für die

2090er prognostiziert das Modell natürlichen Schneefall an durchschnittlich nur

13 und für die Beschneiung geeignete Zeitfenster an durchschnittlich nur 8 Tagen
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pro Saison. Unter der Annahme, dass diese Prognosen zutreffend sind, wäre ein

wirtschaftlicher Betrieb spätestens in den 2040ern nicht mehr darstellbar.

Ob die Amortisation einer Investition an diesem Standort bei einem (aufgrund des

örtlichen Widerstands mutmaßlich immer wieder verzögerten) Baubeginn in den

2020ern und einer Amortisationsdauer von 15 bis 20 Jahren gelingen kann, muss

unter diesen Rahmenbedingungen bezweifelt  werden. Da ein wirtschaftlich er-

folgreicher Betrieb über die 2030er hinaus aufgrund der durch den Klimawandel

stetig steigenden Investitions- und Betriebskosten als höchst  unwahrscheinlich

betrachtet werden muss, der Harz als Urlaubsdestination aber mit an Sicherheit

grenzender Wahrscheinlichkeit auch über diesen Zeitraum hinaus attraktiv blei-

ben wird, kann Kommune und Tourismuswirtschaft nur geraten werden, in den

Aufbau von Infrastruktur und die Etablierung von Angeboten zu investieren, die

auch unter den sich ändernden klimatischen Rahmenbedingungen nicht an Viabi-

lität verlieren. Hierzu könnten am betrachteten Standort unter anderem Angebote

in den Bereichen Mountainbiking, Freeclimbing und Naturwandern gehören.

8.5 Kritische Würdigung der Modelle

8.5.1 Qualitative Bewertung

Das im Rahmen dieser Arbeit konzeptionierte qualitative Analysemodell ist wenig

komplex und basiert auf einer Zusammenstellung von auf Basis der gesichteten

Literatur identifizierten Faktoren, die als wesentlich für den Erfolg oder Misserfolg

von Investitionen in künstliche Beschneiung betrachtet werden dürfen. Da nicht

auszuschließen ist, dass sich bei einer anderen Literaturzusammenstellung oder

bei der Literaturauswertung durch einen anderen Autoren eine abweichende Zu-

sammenstellung an Faktoren ergeben hätte, ist das Modell als subjektiv und da-

mit als methodisch angreifbar zu betrachten. Hinzu kommt, dass mit Blick auf den

maximalen Umfang dieser Arbeit auf ein Ranking oder eine Gewichtung der Fak-

toren verzichtet wurde, auch wenn etwa das Vorhandensein von touristischen Al-

ternativangeboten von geringerer Bedeutung als die Höhenlage oder die Verfüg-

barkeit von Wasser sein dürfte – und der Faktor „mangelnde Akzeptanz“ im Grun-

de nur während der Planungs- und Bauphase von erheblicher Bedeutung ist.

Unbenommen aller  aufgezeigten Mängel ist  davon auszugehen, dass sich die

Prognosevalidität des Modells erheblich verbessern ließe, wenn die Bewertung
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der Faktoren nicht – wie im Rahmen der vorliegenden Arbeit – durch den Autor

selbst, sondern durch eine möglichst breite Gruppe unabhängig voneinander be-

wertender Expertinnen und Stakeholder vorgenommen werden würde.

8.5.2 Quantitative Analyse

Der inhaltliche Schwerpunkt des praktischen Teils dieser Arbeit liegt klar auf der

Entwicklung des quantitativen Analysemodells.  Im Gegensatz zum qualitativen

Modell kann dieses sowohl im Aufbau als auch in der Anwendung als objektiv be-

trachtet werden: Die für das Modell verwendeten Faktoren – Lufttemperatur, Luft-

feuchtigkeit,  Feuchttemperatur,  Windgeschwindigkeit,  Niederschlagsmenge und

Schneehöhe – stellen zweifelsfrei alle für die Prognose der Beschneibarkeit we-

sentlichen Größen dar – und die verwendeten Daten, die entweder aus histori-

schen Aufzeichnungen oder Prognosemodellen stammen, sind von der durchfüh-

renden Person unabhängig. Bezüglich aller Größen, über deren Ausprägung ab-

weichende Auffassungen bestehen könnten, ist das Modell zudem flexibel. 

So können etwa die für eine Beschneiung oder einen Pistenbetrieb abträgliche

maximale Windstärke, die für Ski-Alpin oder Ski-Langlauf erforderlichen Mindest-

schneehöhen oder die für eine Beschneiung notwendige maximale Feuchttempe-

ratur unkompliziert verändert werden, um die Rahmenbedingungen der Analyse

etwa an andere lokale oder technische Gegebenheiten (wie beispielsweise die

Berücksichtigung der Nutzung von Additiven) anpassen zu können. 

Gleiches gilt für die Quelle der Prognosedaten – soll alternativ zur im Rahmen

dieser Arbeit verwendeten Kombination REMO – A1B auf Daten eines anderen

Klimamodells oder eines anderen Emissionsszenarios zurückgegriffen werden,

so ist auch dies unkompliziert möglich. Da einerseits bekannt ist, dass die Anzahl

der für die Beschneiung geeigneten Tage auf Basis von REMO zu einem eher

konservativen Ergebnis führt (vgl. Endler 2010, S. 48 f.), die Erreichung eines Po-

sitiv-Szenarios wie A1B andererseits aber mittlerweile als unwahrscheinlich gilt,

ist die Option der Verwendung alternativer Kombinationen aus Klimamodell und

Emissionsszenario grundsätzlich als sinnvoll zu betrachten.
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9. Fazit und Ausblick

9.1 Fazit

Die künstliche Beschneiung als Anpassungsstrategie wintertouristischer Anbieter

an den Klimawandel ist erkennbar nur eine temporäre Lösung. Zwar wird die Pro-

duktion von Kunstschnee in vielen der höhergelegenen mitteleuropäischen Ski-

gebiete noch bis Mitte dieses Jahrhunderts technisch möglich sein (vgl.  Steiger

2010, S. 4), der zunehmende Kunstschneebedarf, die Verknappung von Wasser-

ressourcen und die stetig  steigenden Energiekosten werden jedoch lange vor

dem Ende der technischen Möglichkeit dazu führen, dass der Kunstschneebe-

trieb immer teurer und damit unattraktiver wird und seine Konkurrenzfähigkeit mit

alternativen touristischen Angeboten einbüßt (vgl. Abegg 2011, S. 23). 

Insbesondere kleinere und weniger investitionsstarke sowie niedriger gelegene

Skigebiete werden mittelfristig die „Zwischenlösung Kunstschnee“ aufgeben müs-

sen – auch wenn sie sich derzeit nicht selten durch hohe kreditfinanzierte sowie

teilweise auch öffentlich geförderte (und daher mit entsprechenden Mindestnutz-

zeiten verbundene) Investitionen der weiteren Beschneiung verschreiben. Auch

wenn exakte Prognosen für einzelne Skigebiete mit hohem Aufwand und Unsi-

cherheiten verbunden sind, kann allgemein festgestellt werden, dass der Aufbau

schneeunabhängiger Angebote verglichen mit weiteren Investitionen in die Be-

schneiung in vielen Regionen den größeren wirtschaftlichen Erfolg verspricht.

Diese Problematik wurde von vielen Betreibern noch nicht erkannt – offenbar un-

ter  anderem,  weil  der  große  wirtschaftliche  und  technische  Erfolg  der  Kunst-

schneeproduktion in den 1990ern und 2000ern „die Verantwortlichen in vielerlei

Hinsicht sehr sicher gemacht und zu einer veränderten Risikowahrnehmung ge-

führt [hat]“ (Trawöger & Steiger 2012, S. 28). Wie sämtliche im Rahmen der Lite-

raturrecherche aufgefundenen Befragungen von Entscheidungsträgern in Winter-

sportbetrieben oder Kommunen zeigen, wird der Klimawandel entweder als ein

abstraktes, zeitlich noch sehr weit entferntes Problem betrachtet (vgl. Lenz 2012,

S. 15; Demiroglu et al. 2015, S. 120; Heuchele et al. 2014, S. 13) oder sogar voll-

kommen ignoriert oder geleugnet (vgl. Campos et al. 2018, S. 8; Demiroglu et al.

2015, S. 121). Verbreitet ist auch die Ansicht, dass es sich beim Klimawandel

zwar um ein ernsthaftes Problem für den Wintersporttourismus handelt, das aber
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gerade für das eigene Skigebiet aufgrund dessen Lage, Bekanntheit, finanzieller

Ausstattung oder lokalklimatischer Besonderheiten nicht als existenzbedrohend

zu betrachten ist (vgl. Heuchele et al. 2014, S. 6 f.; Gschwend 2013, S. 1).

Das unterentwickelte Problembewusstsein seitens der Wintersportanbieter, wel-

ches sich aufgrund deren herausgehobener Stellung bei der örtlichen Meinungs-

bildung (siehe auch Kapitel 5.4) auf zahlreiche andere Akteure überträgt, führt zu

einem insgesamt  geringen  Interesse  an  der  Schaffung  alternativer  Angebote.

Selbst sogenannte „no regret“-Investitionen (vgl. hierzu Balbi et al. 2011, S. 54),

die sich auch dann tragen würden, wenn der Klimawandel vollständig ausbliebe,

werden durch den von den Bahnbetreibern vorgegebenen „strategischen Fokus

auf den Erhalt des Skigebiets“ (Trawöger & Steiger 2012, S. 29) unterbunden.

Diese problematische Entwicklung wird durch eine Reihe weiterer Trends ver-

stärkt, welche die Zukunft des Wintersporttourismus als Wachstumsmarkt in Fra-

ge stellen. Zu diesen Trends gehört neben dem demografisch bedingt sinkenden

Interesse an stark bewegungsorientierten und körperlich herausfordernden tou-

ristischen Angeboten (vgl. Damm et al. 2017, S. 40; Steiger 2011, S. 692) der ge-

rade bei jüngeren Zielgruppen zunehmend stärker ausgeprägte Wunsch, dass

auch erlebnisorientierte und „trendige“ Reisen einem ökologischen Anspruch ge-

nügen (vgl. Kreilkamp 2011, S. 207). Die Wintersportindustrie steht aufgrund der

in Kapitel 4 dargestellten ökologischen Folgen künstlicher Beschneiung in beson-

derem Maße im Fokus negativer Aufmerksamkeit. Dieser Wertewandel bei den

Nachfragern,  gepaart  mit  dem Trend zu kürzeren Urlauben (vgl.  Damm et  al.

2014, S. 18) und der steigenden Bereitschaft von Skiurlaubern, bei ungünstigen

Witterungsbedingungen spontan das Reiseziel zu wechseln (vgl.  Bischof et al.

2017, S. 238), stellen die Branche vor enorme Herausforderungen. 

Vor diesem Hintergrund ist damit zu rechnen, dass in den kommenden Jahrzehn-

ten zahlreiche weitere Skigebiete aufgrund hoher Kosten und sinkender Nachfra-

ge den Betrieb einstellen werden, obwohl eine technische Beschneiung in vielen

dieser Gebiete weiterhin möglich sein dürfte. Gerade für niedrig gelegene Skige-

biete oder Skigebiete, in denen bislang noch keine oder nur geringfügige Investi-

tionen in künstliche Beschneiung vorgenommen wurden, kann daher nur empfoh-

len werden, eine Diversifikationsstrategie zu verfolgen, in der die technische Be-

schneiung neben Naturschnee- und witterungsunabhängigen Angeboten lediglich
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eine untergeordnete Rolle spielt. Das im Rahmen dieser Arbeit als Beispielfall für

die DSS-Anwendung betrachtete Winterberg-Projekt darf als ein geradezu proto-

typisches Exempel für diesen strategischen Ansatz betrachtet werden.

9.2 Ausblick

Das im Rahmen dieser Masterarbeit entwickelte DSS erreicht derzeit noch nicht

den Reifegrad eines kommerziell einsetzbaren Produkts. Wie bereits in Kapitel

8.5 dargestellt, zeichnet sich das für die quantitative Analyse verwendete Modell

aber durch einen hohen Grad an Flexibilität aus und kann nahezu beliebig an an-

dere lokalklimatische oder technische Rahmenbedingungen angepasst bzw. ne-

ben Realdaten auch mit prognostischen Daten aus den verschiedensten Kombi-

nationen von Klimamodellen und Emissionsszenarien unterlegt werden.

Zur weiteren Professionalisierung der Software empfehlen sich aus Sicht des Au-

tors insbesondere die beiden nachfolgend kurz vorgestellten Schritte:

Umstellung des quantitativen Analysemodells auf Stundenbasis: Das derzeit auf

Basis von Tagesmittelwerten für Lufttemperatur und Windgeschwindigkeit operie-

rende quantitative Analysemodell könnte auf Stundenmittelwerte umgestellt wer-

den. Dies würde den Detailgrad der Prognostik verbessern und es ermöglichen,

einzelne für die Beschneiung geeignete Zeitfenster an ansonsten ungeeigneten

Tagen zu identifizieren, was mit dem aktuellen Modell nicht möglich ist. Darüber

hinaus könnte das Modell durch den Wechsel der zeitlichen Basis noch um einen

interessanten Aspekt erweitert werden: Die Berücksichtigung von Vorgaben des

Lärmschutzes, die – regional unterschiedlich – ab bestimmten Uhrzeiten eine Be-

schneiung oder auch eine Präparation von Pisten untersagen, wodurch geeigne-

te Zeitfenster nicht immer genutzt werden können. Auch dieser für die Beschnei-

ungsprognostik wichtige Aspekt findet sich im aktuellen Modell nicht wieder. 

Entwicklung einer professionellen Benutzeroberfläche: Sowohl das qualitative als

auch das quantitative Analysemodell wurden im Rahmen dieser Arbeit unter Ein-

satz der freien Office-Software LibreOffice implementiert – eine für Testzwecke

ausreichende Softwarebasis. Um ein Produkt zu generieren, welches kommerzi-

ellen Ansprüchen genügt, wäre allerdings eine Standalone-Realisierung mit be-

nutzerfreundlicher Oberfläche notwendig, die etwa über eine Implementierung in

den Programmiersprachen C++,  C# oder  VisualBasic.NET und unter  Verwen-
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dung von Microsoft Visual Studio erfolgen könnte. Neben einer optisch anspre-

chenderen Oberfläche könnte bei dieser Implementierung die bereits in Kapitel

8.5 angesprochene Flexibilisierung integriert werden, indem Anwenderinnen die

Möglichkeit gegeben wird, mit nur einem Klick zwischen verschiedenen Klimamo-

dellen und Emissionsszenarien zu wechseln. Auch die derzeit zwar mögliche, im

aktuellen Interface aber noch versteckte Option der Anpassung von Grenzpara-

metern  (wie  etwa  der  für  einen  sicheren  Pistenbetrieb  maximal  tolerierbaren

Windgeschwindigkeit) ließe sich im Rahmen dieser Implementierung verbessern. 

Integriert werden sollten darüber hinaus ein Assistent, welcher die Anwenderin-

nen über die Abfrage von qualitativen wie quantitativen Parametern schrittweise

zum Analyseergebnis geleitet, und dabei auch eine Wichtung der Bewertungsfak-

toren gestattet, sowie ein Reporting-Modul, welches die Ausgabe der Analyseer-

gebnisse (idealerweise unter gleichzeitiger Berücksichtigung verschiedener Kom-

binationen von Klimamodell, Emissionsszenario und Modellgrenzwerten) in Form

eines übersichtlichen und zur Weitergabe geeigneten Dokuments ermöglicht.

Die skizzierten Verbesserungen am Modell sowie an der Softwareimplementation

sollen in den kommenden zwei Jahren schrittweise umgesetzt und Open Access

zum freien Download zur Verfügung gestellt werden. Der Autor hofft, potentiellen

Investoren aber auch kommunalen Entscheidungsträgern, Umweltverbänden und

interessierten Bürgerinnen und Bürgern auf  diesem Weg ein nützliches Werk-

zeug zur Evaluation von Beschneiungsinvestitionen zur Verfügung stellen zu kön-

nen. Die im Rahmen dieser Masterarbeit entwickelte LibreOffice-Implementierung

wird im Anschluss an die Bewertung der Arbeit ebenfalls Open Access publiziert.
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Anhang A: Ergebnisse der Literaturrecherche

Kunstschnee Beschneiung Künstlicher

Schnee

Technischer

Schnee

Schneesi-

cherheit

Links

Datum ∑ Datum ∑ Datum ∑ Datum ∑ Datum ∑ ∑

Open Grey 20.01. 0 20.01. 0 20.01. 0 20.01. 0 20.01. 0 0

EconBiz 20.01. 0 20.01. 1 20.01. 0 20.01. 0 20.01. 1 1

BASE 20.01. 4 20.01. 8 20.01. 4 20.01. 0 20.01. 1 0

Science.gov 20.01. 0 20.01. 0 20.01. 0 20.01. 0 20.01. 0 0

Google Scholar 20.01. 70 27.01. 113 20.01. 5 20.01. 17 27.01. 106 0

DOAJ 20.01. 0 20.01. 0 20.01. 1 20.01. 0 20.01. 0 1

MS Academic Search 20.01. 0 20.01. 2 20.01. 0 20.01. 0 26.01. 2 6

Academia 27.01. 16 27.01. 13 27.01. 0 27.01. 3 27.01. 6 0

Mendeley 20.01. 0 20.01. 0 20.01. 0 20.01. 0 26.01. 0 0

ResearchGate 20.01. 2 20.01. 6 20.01. 0 20.01. 0 26.01. 4 2

arXiv 20.01. 0 20.01. 0 20.01. 0 20.01. 0 26.01. 0 0

SSOAR 20.01. 0 20.01. 1 20.01. 0 20.01. 0 26.01. 1 0

Statista 01.02. 8 01.02. 5 01.02. 0 01.02. 0 01.02. 1 0

Tabelle 12: Ergebnisse der deutschsprachigen Literaturrecherche.

Snow-Making Snowmaking Artificial

Snow

Technical

Snow

Snow

Reliability

Links

Date ∑ Date ∑ Date ∑ Date ∑ Date ∑ ∑

Open Grey 20.01. 0 20.01. 0 20.01. 0 20.01. 0 20.01. 0 0

EconBiz 26.01. 2 26.01. 3 26.01. 2 26.01. 1 26.01. 2 0

BASE 26.01. 4 27.01. 21 27.01. 16 27.01. 4 27.01. 7 0

Science.gov 27.01. 0 27.01. 0 27.01. 1 28.01. 0 28.01. 0 0

Google Scholar 03.02. 40 03.02. 100 03.02. 32 03.02. 20 03.02. 66 0

DOAJ 28.01. 1 28.01. 7 28.01. 5 28.01. 2 28.01. 1 0

MS Academic Search 30.01. 0 30.01. 19 30.01. 6 30.01. 2 30.01. 4 1

Academia 03.02. 28 03.02. 29 03.02. 5 01.02. 7 01.02. 36 0

Mendeley 27.01. 3 27.01. 13 27.01. 8 27.01. 2 27.01. 3 1

ResearchGate 30.01. 8 01.02. 62 02.02. 25 28.01. 8 30.01. 13 0

arXiv 27.01. 0 27.01. 1 27.01. 0 27.01. 0 27.01. 0 0

SSOAR 27.01. 0 27.01. 1 27.01. 0 27.01. 1 27.01. 1 0

Statista 01.02. 1 01.02. 1 01.02. 0 01.02. 0 01.02. 0 0

Tabelle 13: Ergebnisse der englischsprachigen Literaturrecherche.
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Anhang B: ReKIS-Auswertung zur Saison 2006/2007

Wintersaison 2006 / 2007

Modellparameter

Saisondauer 01.11. - 31.03.

Datenquelle ReKIS

Messstation Schierke (51.7656; 10.6536; 609 m)

Maximale Feuchttemperatur -3°C

Minimale Schneedecke (Abfahrt) 30 cm

Minimale Schneedecke (Langlauf) 10 cm

Maximale Windgeschwindigkeit 11,31 m/s (< 6 Bft)

Maximale Lufttemperatur 10°C (> 2 Tage)

Maximale Regenmenge 20 mm (> 2 Tage)

Auswertungen

Tage 151 100,00%

Beschneiung ist möglich* 8 5,30%

Beschneiung ist unmöglich 143 94,70%

Alpin-Ski möglich (natürlich) 1 0,66%

Alpin-Ski unmöglich (natürlich) 150 99,34%

Ski-Langlauf möglich (natürlich) 12 7,95%

Ski-Langlauf unmöglich (natürlich) 139 92,05%

Tage mit zu starkem Wind 0 0,00%

Perioden zu hoher Temperatur 0 0,00%

Perioden mit zu viel Regenguss 0 0,00%

Mögliche Schneefalltage 15 9,93%

Beschneiung ist nötig und möglich*** 8 5,30%

Bewertungen

100-Tage-Regel (01.11.-31.03) Nicht erfüllt

(zu 50% natürlich eingehalten) Nein

Beschneiung an > 10 Tagen möglich Nein

Beschneiung an > 20 Tagen möglich Nein

Disruptive Perioden (Wind, Regen) 0

Anzahl windbedingter Unterbrechnungen 0

Weihnachtsindikator (22.12.-04.01) Nicht erfüllt

(zu 50% natürlich eingehalten) Nein

* Einflussfaktoren: Feuchttemperatur und Windstärke

** Kalkuliert auf Basis von Lufttemperatur und Luftfeuchtigkeit

*** Einflussfaktoren: Beschneibarkeit und Schneedeckenhöhe
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Tag Monat Jahr Lufttemperatur

(in °C)

Luftfeuchtigkeit

(in %)

Wind

(in m/s)

Schneehöhe

(in cm)

Niederschlag

(in mm)

Feuchttemp.

(in °C) ***

01 Nov. 2006 0,7 85 6,7 0 10,6 -0,2

02 Nov. 2006 -1,7 84 4,4 1 0,0 -2,6

03 Nov. 2006 -0,4 81 2,4 0 0,8 -1,5

04 Nov. 2006 3,0 91 2,4 1 15,0 2,5

05 Nov. 2006 6,2 92 6,7 0 5,4 5,8

06 Nov. 2006 7,1 86 4,4 0 0,0 6,2

07 Nov. 2006 5,9 74 2,4 0 0,0 4,1

08 Nov. 2006 6,6 70 4,4 0 19,6 4,4

09 Nov. 2006 4,9 90 6,7 0 5,8 4,3

10 Nov. 2006 2,8 86 2,4 0 0,0 2,0

11 Nov. 2006 3,4 84 4,4 0 20,8 2,4

12 Nov. 2006 2,1 91 4,4 0 7,1 1,6

13 Nov. 2006 4,6 91 4,4 0 11,4 4,1

14 Nov. 2006 8,0 86 2,4 0 3,8 7,1

15 Nov. 2006 9,4 87 2,4 0 0,0 8,6

16 Nov. 2006 11,3 72 2,4 0 0,0 9,0

17 Nov. 2006 9,2 83 2,4 0 5,1 8,1

18 Nov. 2006 6,9 91 2,4 0 0,7 6,4

19 Nov. 2006 3,7 94 2,4 0 6,3 3,4

20 Nov. 2006 2,1 87 4,4 0 6,6 1,3

21 Nov. 2006 4,2 93 2,4 0 6,0 3,8

22 Nov. 2006 1,4 92 2,4 0 0,0 0,9

23 Nov. 2006 4,5 92 4,4 0 23,8 4,1

24 Nov. 2006 6,8 91 4,4 0 3,2 6,3

25 Nov. 2006 8,5 91 4,4 0 0,3 8,1

26 Nov. 2006 6,9 88 2,4 0 0,0 6,2

27 Nov. 2006 5,6 91 2,4 0 0,0 5,1

28 Nov. 2006 6,6 91 2,4 0 0,0 6,1

29 Nov. 2006 6,1 90 4,4 0 0,2 5,5

30 Nov. 2006 0,0 94 0,9 0 0,0 -0,4

01 Dez. 2006 4,8 88 4,4 0 0,0 4,1

02 Dez. 2006 4,5 88 4,4 0 0,2 3,8

03 Dez. 2006 6,1 89 2,4 0 6,4 5,5

04 Dez. 2006 5,1 88 4,4 0 18,9 4,4

05 Dez. 2006 9,3 87 4,4 0 6,2 8,5

06 Dez. 2006 6,5 87 4,4 0 1,0 5,7

07 Dez. 2006 4,4 81 4,4 0 2,9 3,2

08 Dez. 2006 6,6 80 4,4 0 0,8 5,3

09 Dez. 2006 3,8 82 2,4 0 0,8 2,7

10 Dez. 2006 2,2 87 2,4 0 0,3 1,4

11 Dez. 2006 0,9 90 4,4 0 9,7 0,3
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Tag Monat Jahr Lufttemperatur

(in °C)

Luftfeuchtigkeit

(in %)

Wind

(in m/s)

Schneehöhe

(in cm)

Niederschlag

(in mm)

Feuchttemp.

(in °C) ***

12 Dez. 2006 2,6 90 2,4 0 5,6 2,0

13 Dez. 2006 3,5 94 4,4 0 1,8 3,2

14 Dez. 2006 4,8 89 4,4 0 0,0 4,2

15 Dez. 2006 5,8 62 2,4 0 0,0 3,1

16 Dez. 2006 4,4 74 6,7 0 3,8 2,7

17 Dez. 2006 0,9 91 2,4 0 5,0 0,4

18 Dez. 2006 0,7 93 0,9 1 0,0 0,3

19 Dez. 2006 0,4 86 2,4 1 0,0 -0,4

20 Dez. 2006 1,3 92 0,9 0 2,1 0,8

21 Dez. 2006 2,8 94 0,9 0 0,0 2,5

22 Dez. 2006 1,4 93 0,9 0 0,0 1,0

23 Dez. 2006 -0,9 96 0,9 0 0,0 -1,2

24 Dez. 2006 -0,8 94 0,9 0 0,0 -1,2

25 Dez. 2006 -0,4 98 0,9 0 0,0 -0,6

26 Dez. 2006 -1,3 90 0,9 0 0,0 -1,9

27 Dez. 2006 -2,4 85 0,9 0 0,0 -3,2

28 Dez. 2006 -1,7 96 2,4 0 8,2 -2,0

29 Dez. 2006 0,7 93 0,9 4 0,2 0,3

30 Dez. 2006 3,1 78 2,4 3 11,7 1,7

31 Dez. 2006 4,8 88 4,4 0 11,4 4,1

01 Jan. 2007 4,3 86 6,7 0 7,9 3,4

02 Jan. 2007 1,1 90 4,4 0 6,8 0,5

03 Jan. 2007 1,8 91 4,4 0 5,5 1,3

04 Jan. 2007 3,4 92 2,4 0 21,1 2,9

05 Jan. 2007 3,7 91 4,4 0 6,5 3,2

06 Jan. 2007 5,5 92 2,4 0 21,8 5,1

07 Jan. 2007 4,4 90 4,4 0 1,5 3,8

08 Jan. 2007 4,3 90 4,4 0 14,7 3,7

09 Jan. 2007 8,4 85 4,4 0 0,8 7,5

10 Jan. 2007 7,5 78 4,4 0 8,8 6,0

11 Jan. 2007 2,3 85 6,7 0 35,0 1,4

12 Jan. 2007 3,9 86 6,7 0 3,3 3,0

13 Jan. 2007 7,4 87 4,4 0 5,5 6,6

14 Jan. 2007 3,3 82 4,4 0 0,0 2,2

15 Jan. 2007 1,0 85 2,4 0 0,0 0,1

16 Jan. 2007 2,4 89 2,4 0 0,0 1,7

17 Jan. 2007 5,1 90 4,4 0 30,7 4,5

18 Jan. 2007 5,6 91 9,4 0 80,7 5,1

19 Jan. 2007 3,8 87 6,7 0 7,3 3,0

20 Jan. 2007 6,4 88 4,4 0 8,7 5,7

21 Jan. 2007 1,4 88 4,4 0 15,9 0,7
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Tag Monat Jahr Lufttemperatur

(in °C)

Luftfeuchtigkeit

(in %)

Wind

(in m/s)

Schneehöhe

(in cm)

Niederschlag

(in mm)

Feuchttemp.

(in °C) ***

22 Jan. 2007 -1,6 89 2,4 4 2,5 -2,2

23 Jan. 2007 -7,9 86 0,9 3 0,0 -8,4

24 Jan. 2007 -7,3 87 4,4 3 0,4 -7,8

25 Jan. 2007 -6,7 87 2,4 3 0,1 -7,2

26 Jan. 2007 -7,6 89 4,4 4 8,7 -8,0

27 Jan. 2007 -1,8 88 4,4 15 3,8 -2,5

28 Jan. 2007 0,4 94 4,4 17 18,2 0,0

29 Jan. 2007 1,5 89 6,7 15 3,0 0,8

30 Jan. 2007 2,0 87 4,4 10 1,3 1,2

31 Jan. 2007 2,7 84 6,7 6 2,9 1,7

01 Feb. 2007 2,5 86 2,4 3 3,7 1,7

02 Feb. 2007 4,4 92 2,4 0 1,1 4,0

03 Feb. 2007 2,7 87 6,7 0 3,6 1,9

04 Feb. 2007 1,3 92 0,9 0 0,0 0,8

05 Feb. 2007 -0,3 88 2,4 0 1,8 -1,0

06 Feb. 2007 -2,4 86 0,9 1 0,0 -3,1

07 Feb. 2007 -3,4 90 0,9 1 1,6 -3,9

08 Feb. 2007 -2,2 92 0,9 3 13,1 -2,7

09 Feb. 2007 -0,1 92 2,4 16 6,1 -0,6

10 Feb. 2007 -3,5 95 2,4 20 3,3 -3,8

11 Feb. 2007 0,4 95 2,4 21 10,9 0,1

12 Feb. 2007 3,0 94 2,4 16 21,0 2,7

13 Feb. 2007 2,8 92 4,4 5 19,8 2,3

14 Feb. 2007 1,6 93 0,9 0 8,3 1,2

15 Feb. 2007 1,4 93 4,4 1 1,3 1,0

16 Feb. 2007 0,1 92 0,9 0 0,0 -0,4

17 Feb. 2007 0,4 88 0,9 0 0,0 -0,3

18 Feb. 2007 2,3 85 0,9 0 0,0 1,4

19 Feb. 2007 0,0 79 0,9 0 0,0 -1,2

20 Feb. 2007 1,2 87 2,4 0 0,0 0,4

21 Feb. 2007 2,6 86 2,4 0 6,1 1,8

22 Feb. 2007 3,2 88 2,4 0 0,0 2,5

23 Feb. 2007 2,6 90 0,9 0 0,3 2,0

24 Feb. 2007 4,2 87 2,4 0 3,1 3,4

25 Feb. 2007 4,1 92 2,4 0 10,8 3,7

26 Feb. 2007 2,5 93 2,4 0 10,1 2,1

27 Feb. 2007 0,7 91 4,4 1 15,0 0,2

28 Feb. 2007 4,7 88 4,4 0 18,7 4,0

01 Mrz. 2007 3,9 89 2,4 0 18,6 3,2

02 Mrz. 2007 1,3 90 2,4 0 7,8 0,7

03 Mrz. 2007 0,6 95 0,9 1 13,9 0,3
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Tag Monat Jahr Lufttemperatur

(in °C)

Luftfeuchtigkeit

(in %)

Wind

(in m/s)

Schneehöhe

(in cm)

Niederschlag

(in mm)

Feuchttemp.

(in °C) ***

04 Mrz. 2007 1,5 93 0,9 2 0,8 1,1

05 Mrz. 2007 2,7 88 0,9 0 4,1 2,0

06 Mrz. 2007 4,8 79 2,4 0 9,5 3,4

07 Mrz. 2007 4,6 89 0,9 0 0,4 4,0

08 Mrz. 2007 2,6 90 2,4 0 0,0 2,0

09 Mrz. 2007 3,3 84 2,4 0 2,7 2,3

10 Mrz. 2007 2,3 81 0,9 0 0,0 1,1

11 Mrz. 2007 5,2 78 0,9 0 0,0 3,7

12 Mrz. 2007 5,6 78 0,9 0 0,0 4,1

13 Mrz. 2007 7,3 78 0,9 0 0,0 5,8

14 Mrz. 2007 3,5 72 0,9 0 0,0 1,7

15 Mrz. 2007 2,8 83 0,9 0 0,0 1,8

16 Mrz. 2007 4,0 80 0,9 0 1,7 2,7

17 Mrz. 2007 4,8 90 2,4 0 14,9 4,2

18 Mrz. 2007 2,9 88 4,4 0 17,8 2,2

19 Mrz. 2007 -0,6 80 2,4 1 0,3 -1,7

20 Mrz. 2007 0,1 84 0,9 0 2,1 -0,8

21 Mrz. 2007 -1,1 92 0,9 0 20,9 -1,6

22 Mrz. 2007 -0,4 98 0,9 22 30,9 -0,6

23 Mrz. 2007 0,3 96 0,9 34 17,3 0,0

24 Mrz. 2007 3,8 85 2,4 24 0,0 2,9

25 Mrz. 2007 4,5 74 2,4 15 0,0 2,8

26 Mrz. 2007 4,1 73 2,4 8 0,0 2,3

27 Mrz. 2007 3,7 72 0,9 3 0,0 1,9

28 Mrz. 2007 4,6 72 2,4 0 0,0 2,7

29 Mrz. 2007 4,0 76 0,9 0 0,0 2,4

30 Mrz. 2007 4,1 86 0,9 0 5,5 3,2

31 Mrz. 2007 6,0 71 2,4 0 0,0 4,0
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Anhang C: Detailergebnisse der Standortanalyse

1950er Tage mit

mindestens 10

cm Naturschnee

Tage mit

mindestens 30

cm Naturschnee

Tage mit

natürlichem

Schneefall

Tage, an

denen eine

Beschneiung

möglich wäre

Disruptive 

Perioden 

pro Saison

1950/51 n.b. n.b. n.b. n.b. n.b.

1951/52 97 65 34 40 0

1952/53 123 107 48 62 0

1953/54 87 57 24 43 0

1954/55 98 55 39 67 0

1955/56 85 57 46 59 0

1956/57 54 7 20 33 1

1957/58 106 68 45 60 0

1958/59 60 20 30 34 0

1959/60 49 14 28 39 0

Mittel 84 50 35 49 Summe: 1

Tabelle 14: Detailergebnisse der ReKIS-Standortanalyse für die 1950er.

1960er Tage mit

mindestens 10

cm Naturschnee

Tage mit

mindestens 30

cm Naturschnee

Tage mit

natürlichem

Schneefall

Tage, an

denen eine

Beschneiung

möglich wäre

Disruptive 

Perioden 

pro Saison

1960/61 87 58 40 23 1

1961/62 100 45 52 61 0

1962/63 122 107 68 84 0

1963/64 87 18 40 68 0

1964/65 101 78 65 59 0

1965/66 118 99 66 48 0

1966/67 n.b. n.b. n.b. n.b. n.b.

1967/68 n.b. n.b. n.b. n.b. n.b.

1968/69 n.b. n.b. n.b. n.b. n.b.

1969/70 124 117 n.b. n.b. n.b.

Mittel 106 75 55 57 Summe: 1

Tabelle 15: Detailergebnisse der ReKIS-Standortanalyse für die 1960er.
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1970er Tage mit

mindestens 10

cm Naturschnee

Tage mit

mindestens 30

cm Naturschnee

Tage mit

natürlichem

Schneefall

Tage, an

denen eine

Beschneiung

möglich wäre

Disruptive 

Perioden 

pro Saison

1970/71 53 17 n.b. n.b. n.b.

1971/72 67 8 n.b. n.b. n.b.

1972/73 72 11 n.b. n.b. n.b.

1973/74 104 55 n.b. n.b. n.b.

1974/75 49 19 n.b. n.b. n.b.

1975/76 99 37 56 50 1

1976/77 78 19 50 40 0

1977/78 131 100 65 43 0

1978/79 102 90 76 73 0

1979/80 110 84 57 46 1

Mittel 87 44 61 50 Summe: 2

Tabelle 16: Detailergebnisse der ReKIS-Standortanalyse für die 1970er.

1980er Tage mit

mindestens 10

cm Naturschnee

Tage mit

mindestens 30

cm Naturschnee

Tage mit

natürlichem

Schneefall

Tage, an

denen eine

Beschneiung

möglich wäre

Disruptive 

Perioden 

pro Saison

1980/81 116 83 78 61 1

1981/82 97 57 81 53 0

1982/83 79 32 44 37 0

1983/84 117 83 71 59 1

1984/85 80 51 66 60 0

1985/86 109 89 84 71 0

1986/87 106 102 70 70 1

1987/88 57 48 52 31 0

1988/89 25 0 23 14 0

1989/90 26 9 25 20 1

Mittel 81 55 59 48 Summe: 4

Tabelle 17: Detailergebnisse der ReKIS-Standortanalyse für die 1980er.
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1990er Tage mit

mindestens 10

cm Naturschnee

Tage mit

mindestens 30

cm Naturschnee

Tage mit

natürlichem

Schneefall

Tage, an

denen eine

Beschneiung

möglich wäre

Disruptive 

Perioden 

pro Saison

1990/91 61 24 41 46 0

1991/92 39 8 n.b. n.b. n.b.

1992/93 72 36 38 42 0

1993/94 106 29 53 31 1

1994/95 66 29 49 27 2

1995/96 100 43 79 87 0

1996/97 99 37 52 41 0

1997/98 44 14 40 31 1

1998/99 77 29 54 40 0

1999/00 78 10 50 28 0

Mittel 74 26 51 41 Summe: 4

Tabelle 18: Detailergebnisse der ReKIS-Standortanalyse für die 1990er.

2000er Tage mit

mindestens 10

cm Naturschnee

Tage mit

mindestens 30

cm Naturschnee

Tage mit

natürlichem

Schneefall

Tage, an

denen eine

Beschneiung

möglich wäre

Disruptive 

Perioden 

pro Saison

2000/01 55 2 45 40 0

2001/02 57 39 44 35 0

2002/03 47 23 39 51 0

2003/04 81 39 55 46 0

2004/05 85 63 54 47 0

2005/06 115 97 63 70 0

2006/07 12 1 15 8 0

2007/08 37 10 25 22 1

2008/09 104 33 41 41 0

2009/10 107 83 50 59 0

Mittel 70 39 43 42 Summe: 1

Tabelle 19: Detailergebnisse der ReKIS-Standortanalyse für die 2000er.

Version 1.0 Seite 124 von 130 26.06.2019



Christian Reinboth infernum q795269

2010er Tage mit

mindestens 10

cm Naturschnee

Tage mit

mindestens 30

cm Naturschnee

Tage mit

natürlichem

Schneefall

Tage, an

denen eine

Beschneiung

möglich wäre

Disruptive 

Perioden 

pro Saison

2010/11 75 46 50 63 0

2011/12 77 37 24 21 0

2012/13 91 41 65 67 0

2013/14 15 0 15 10 0

2014/15 69 33 32 24 1

2015/16 28 6 27 21 1

2016/17 52 37 23 31 0

Mittel 58 29 34 34 Summe: 2

Tabelle 20: Detailergebnisse der ReKIS-Standortanalyse für die 2010er.

2010er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2017/18 32 12 0

2018/19 34 21 0

2019/20 44 39 0

Mittel 39 30 Summe: 0

Tabelle 21: Detailergebnisse der REMO-Standortprognose für die 2010er.
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2020er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2020/21 36 26 0

2021/22 37 31 1

2022/23 29 18 0

2023/24 58 45 0

2024/25 21 15 0

2025/26 25 17 0

2026/27 34 28 0

2027/28 31 23 0

2028/29 47 45 0

2029/30 27 14 0

Mittel 35 26 Summe: 1

Tabelle 22: Detailergebnisse der REMO-Standortprognose für die 2020er.

2030er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2030/31 10 10 0

2031/32 26 10 0

2032/33 33 19 0

2033/34 50 44 0

2034/35 53 30 0

2035/36 27 31 0

2036/37 28 15 1

2037/38 44 41 0

2038/39 16 5 0

2039/40 18 5 0

Mittel 31 21 Summe: 1

Tabelle 23: Detailergebnisse der REMO-Standortprognose für die 2030er.
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2040er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2040/41 24 18 2

2041/42 16 6 0

2042/43 23 5 0

2043/44 20 4 1

2044/45 18 6 0

2045/46 46 33 0

2046/47 41 28 1

2047/48 15 7 1

2048/49 38 18 0

2049/50 35 26 0

Mittel 28 15 Summe: 5

Tabelle 24: Detailergebnisse der REMO-Standortprognose für die 2040er.

2050er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2050/51 35 15 0

2051/52 25 23 0

2052/53 21 17 0

2053/54 13 7 1

2054/55 23 18 2

2055/56 26 29 0

2056/57 32 31 0

2057/58 12 18 0

2058/59 7 2 0

2059/60 5 0 0

Mittel 20 16 Summe: 3

Tabelle 25: Detailergebnisse der REMO-Standortprognose für die 2050er.
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2060er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2060/61 17 7 0

2061/62 18 19 0

2062/63 27 30 0

2063/64 32 28 1

2064/65 28 4 0

2065/66 28 14 0

2066/67 11 5 1

2067/68 15 8 0

2068/69 17 7 0

2069/70 13 6 0

Mittel 21 13 Summe: 2

Tabelle 26: Detailergebnisse der REMO-Standortprognose für die 2060er.

2070er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2070/71 32 24 1

2071/72 32 19 0

2072/73 30 29 1

2073/74 11 10 2

2074/75 5 2 1

2075/76 15 12 0

2076/77 26 10 0

2077/78 16 10 1

2078/79 14 3 0

2079/80 9 8 0

Mittel 19 13 Summe: 6

Tabelle 27: Detailergebnisse der REMO-Standortprognose für die 2070er.
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2080er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2080/81 10 8 0

2081/82 14 3 0

2082/83 28 10 0

2083/84 4 5 0

2084/85 0 0 0

2085/86 17 7 0

2086/87 7 6 0

2087/88 4 1 0

2088/89 6 1 0

2089/90 1 0 0

Mittel 9 4 Summe: 0

Tabelle 28: Detailergebnisse der REMO-Standortprognose für die 2080er.

2090er Tage mit natürlichem

Schneefall

Tage, an denen eine

Beschneiung möglich

wäre

Disruptive 

Perioden 

pro Saison

2090/91 5 3 0

2091/92 16 3 0

2092/93 5 1 0

2093/94 14 7 0

2094/95 22 18 0

2095/96 23 10 1

2096/97 5 1 0

2097/98 8 6 0

2098/99 28 30 0

2099/00 6 3 1

Mittel 13 8 Summe: 2

Tabelle 29: Detailergebnisse der REMO-Standortprognose für die 2090er.
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